A simple introductory guide to ML/1
Fourth Edition

R.D. Eager, P.J. Brown

Copyright (© 1970,1982,1998,2004,2015 R.D. Eager, P.J. Brown

Permission is granted to copy and/or modify this document for private use
only. Machine readable versions must not be placed on public web sites or F'TP
sites, or otherwise made generally accessible in an electronic form. Instead,
please provide a link to the original document on the official ML/I web site
(http://www.mll.org.uk).

Introduction

ML/I is a general purpose macro processor that is available on many different systems.
It has many uses; probably the most common are the extension of existing programming
languages, and systematic editing.

There already exists a reference manual for ML/I (ML/I User’s Manual), and also a
paper describing ML /T (The ML/I macro processor, Comm. ACM 10, 10 (October 1967)).
However, the former is comparatively large and hence rather forbidding, while the latter
tries to show off some of the more advanced features of ML/I. This Guide provides a short
and simple introduction to ML/I. Obviously, it has been necessary to omit many features
and to over-simplify others, but nevertheless it is hoped that the reader will get a feel of
what ML/I is all about, and an idea of some of its uses.

In order to show exactly what goes into ML /I and, as a result, what comes out, examples
in this Guide have been written as if the reader were using ML /T at an interactive terminal
or workstation. The examples represent a sequence of lines of input to ML/I, starting from
scratch. The input lines are numbered sequentially to aid cross-referencing. Lines of output
are labelled with the word Output, e.g.

23) THIS IS A LINE OF INPUT
Output) THIS IS THE CORRESPONDING OUTPUT

Before actually using ML/I, you should find out the exact form and manner of the input to
ML/T on the system which you are using.

Basic principles

ML/I operates on characters, not numbers. It is fed, as input, a string of characters called
the source text. There is no restriction on the form of the source text; it may, for example,
be a program in any programming language, a scientific paper, a circular letter or some data
for a program. What ML/T does to the source text is to scan through it making systematic
replacements; the resultant text is the output. ML /I produces its output as it goes along. Its
usual sequence of operation is: read a line; perform the necessary replacements; output the
line. However, ML/I is inherently stream-based rather than line-based, so line boundaries
are merely treated as part of its input (but it can easily handle text that is inherently
line-based). In some uses of ML/I, the output is subsequently fed to a compiler or an
assembler.

Macros

The way of making a replacement is by means of a macro. A macro is defined by writing:
MCDEF x AS y

where x describes what is to be replaced, and y, which can be any string of characters, is
what it is to be replaced by. y is called the replacement text.

We shall now start our imaginary session with ML/I, and will illustrate some simple
macros.

The first two lines of input to ML/I are normally used to define some special symbols.
We shall supply these without explanation now, and will refer back to them later:

1) MCINS 7%.

2) MCSKIP MT,<>
We shall now define a macro:
3) MCDEF JONES AS <SMITH>

The above definition causes every subsequent occurrence of JONES to be replaced by SMITH,
for example:

4) PEOPLE SHOULD CONSULT MR. JONES
Output) PEOPLE SHOULD CONSULT MR. SMITH
5)JONES....JONES....
Output)SMITH....SMITH....

Similarly, macros can be defined to replace punctuation characters, for example:

6) MCDEF & AS <;>
7 X=Y&Y=2;
Output) X=Y;Y=27;
The recognition of a macro, and the substitution of its replacement text, is termed a call of
the macro.

The normal way of using ML/T is first to feed it the definitions of the macros (and
other similar constructions — see later) to be used, and then to feed it the source text in
which replacements are to be made. However, it is possible to intersperse macro definitions
with the rest of the source text, as indeed is being done in this Guide.

Atoms

To show how ML/I splits up its source text, consider the following:

8) MCDEF READ AS <INPUT TO THE COMPUTER>
9) THEN READ YOUR DATA, MR. JONES

Output) THEN INPUT TO THE COMPUTER YOUR DATA, MR. JONES
10) THE DREADED READER SHOULD READ

Output) THE DREADED READER SHOULD INPUT TO THE COMPUTER

Note that, in the line above, the sequence READ occurs within DREADED and within READER,
but in neither case has it been replaced. This is because ML/I does not, in fact, scan char-
acter by character but rather atom by atom, where an atom is usually a single punctuation
character (i.e. any character other than a letter or a digit) or a sequence of letters and/or
digits bounded on each side by punctuation characters. Thus in the above line, DREADED is
an atom and hence ML/I does not recognise the letters READ within it.

The character ‘space’ is treated as an atom, and so is the character ‘newline’, the latter
being an imaginary character that occurs at the end of each line. As regards this newline
character, users should be careful only to use it in replacement text exactly where they
want it, for example:

11) MCDEF INTEGER AS <FIXED(15)
12) BINARY>
13) BEGIN INTEGER A,B;

Output) BEGIN FIXED(15)

Output) BINARY A,B;

Note how a newline appears in the output after FIXED(15).

Multi-atom names

The macros defined so far have replaced a single atom. However, it is possible, by using the
keyword WITHS, to specify that a multi-atom sequence be replaced. For example:

14) MCDEF THE WITHS PRIME WITHS MINISTER

15) AS <MR. GLADSTONE>

16) THE PRIME MINISTER CHAIRS THE CABINET
Output) MR. GLADSTONE CHAIRS THE CABINET

Calls within calls

Macro replacement takes place within the replacement text of other macros as well as within
the source text (in fact recursion, i.e. a macro calling itself, is allowed). For example:

17) MCDEF THE WITHS CHAIRMAN
18) AS <THE PRIME MINISTER OR HIS DEPUTY>
19) THE CHAIRMAN SPEAKS FIRST

Output) MR. GLADSTONE OR HIS DEPUTY SPEAKS FIRST

Here, within the replacement text of THE CHATRMAN, THE PRIME MINISTER has been replaced.

Literal brackets

In all the examples of MCDEF, the replacement text has been enclosed within the characters
< and >. These are called literal brackets. They mean ‘copy the enclosed text as it stands’.
You should choose, as your literal brackets, a pair of atoms (or multi-atom sequences) that
do not occur naturally in the text to be processed. In this Guide, the literal brackets were
specified in input line 2) above. If you wanted to use multi-atom sequences (e.g. *(and
)*) as literal brackets, this would be done thus:

20) MCSKIP MT, * WITHS () WITHS =*

With this definition (which has, in fact, supplemented rather than replaced the previous
literal brackets) we can now write

21) MCDEF cur AS *(dog)*
22) cur
Output) dog

This macro has a name in lower case letters. Generally we have used upper case letters in
examples in this Guide since they stand out better. However, ML/I works quite happily
with lower case letters, and these are treated as entirely separate from their upper case
equivalents. Thus cur does not match CUR or Cur. Built-in ML /I names such as MCDEF and
AS must always be given in upper case.

Literal brackets have a secondary use, as illustrated by:

23) MCDEF REWIND AS <PRINT ’Finished with tape’
24) <REWIND>>
25) REWIND

Output) PRINT “’Finished with tape’

Output) REWIND

The occurrence of REWIND within the replacement text of the REWIND macro is enclosed in
literal brackets (which are additional to those that enclose the entire replacement text) to

cause it to be copied literally over to the output; if these literal brackets had been omitted,
it would have been taken as a recursive call of the REWIND macro, and ML/I would have
been set in an endless loop of replacing REWIND at successively deeper levels.

Arguments

The macros that have been defined so far have been of a rather simple kind, in that the
thing to be replaced was always a single pre-defined atom or series of atoms. Now we shall
consider more powerful macros, which reflect the true usefulness of ML/I. Assume we wish
to replace:

UNSTACK x;
for any x, by:
x = STACK[PTR];
PTR = PTIR - 1;
Here the macro has an argument, i.e. an arbitrary string between two predefined delimiters

(in this case UNSTACK and semicolon). It is possible to have more than one argument to a
macro, for instance one might want to replace:

APPEND X TO LIST Y.
by:

Y[0] = Y[0]+1;

YLY[0]] = X;

This macro has two arguments, which are delineated by the three delimiters: APPEND,
TO LIST and full-stop. Delimiters are numbered 0, 1, 2, etc. Delimiter zero (in this case
APPEND) is called the macro name and the last delimiter is called the closing delimiter (in
the case of a macro with no arguments, the macro name is also its closing delimiter).

When a macro is defined, the delimiters are simply listed in the order in which they are
to occur; they may be separated by one or more spaces or newlines. This is called a structure
representation. Thus, the structure representation of the APPEND macro is (preceded by the
necessary call of MCDEF):

26) MCDEF APPEND TO WITHS LIST .

Before specifying the replacement text of this macro, we will give some further explanation.
When ML /T is given a definition of a macro that has arguments, each subsequent occurrence
of the macro name in the source text is taken as a call of the macro; ML/I then searches
for the first delimiter, then the second, and so on until it has found the closing delimiter.
The arbitrary string occurring between delimiter n and delimiter n+1 is called argument
n+1. Thus, the first argument is argument one.

It is usually necessary to insert arguments into the replacement text of a macro, and
this is done by writing %An. where n is the number of the argument to be inserted. Hence,
continuing the definition of the APPEND macro:

27) AS <%A2.[0] = %A2.[0]+1;

28) %A2.[%A2.[0]1]1 = %A1.;>

29) APPEND PATIENT TO LIST WAIT.
Output) WAIT[O] = WAIT[O]+1;
Output) WAIT[WAIT[O]] = PATIENT;

30) APPEND X/Y+9 TO LIST ARRAY.
Output) ARRAY[0] = ARRAY[0]+1;
Output) ARRAY[ARRAY[0]] = X/Y+9;

As a second example, the UNSTACK macro can be defined and used thus:

31) MCDEF UNSTACK ;
32) AS <%A1l. = STACK[PTR];
33) PTR = PTR - 1;>
34) L:UNSTACK OP;
Output) L:0P = STACK[PTR];
Output) PTR = PTR - 1;

It is often convenient to use the imaginary character ‘newline’ as a delimiter, particularly
as a closing one. Newlines themselves are ignored in structure representations (hence the
fact that AS in the previous definitions started on a new line was not significant), so when
it is required to specify newline as a delimiter it is necessary to use a keyword, namely NL
(similarly, most implementations of ML/I have other keywords such as SL, SPACE, SPACES
and perhaps TAB).

The following example defines a macro CALL with newline as its closing delimiter:

35) MCDEF CALL NL
36) AS < BSR %Al.

37 >
38) CALL Pig
Output) BSR Pig

39) UNSTACK Y; LAB: CALL PIGGY
Output) Y = STACK[PTRI];
Output) PTR = PTR - 1; LAB: BSR PIGGY

Optional delimiters
We will now go one step further in the elaboration of macros, and will introduce one of the
most important concepts in ML /I, namely optional delimiters.
Assume one wishes to define a macro which has two alternative forms:
SET a = b + ¢
which is replaced by

LSS b
ADD c
ST a

and
SET a =b - ¢
which is replaced by

LSS b
SUB c
ST a

i.e. delimiter two can be either a plus sign or a minus sign. Options such as this are specified
in structure representations by writing:

OPT branchl OR branch2 OR . . . OR branchN ALL

where each branch can itself be any structure representation. In practice, a branch is usually
a single delimiter. Hence, the structure representation of the SET macro is written:

40) MCDEF SET = OPT + OR - ALL NL

Within the replacement text of this macro, it is necessary to test whether delimiter two of
the current call was a plus or minus sign, and to generate code accordingly. This is done
thus:

41) AS < LSS %A2.
42) MCGO L1 IF %D2. = +
43) SUB %A3.

44) MCGO L2

45) %L1 ADD %A3.
46) HL2. ST %AL.
47) >

Two new features have been introduced here. The first is macro-time statements, i.e.
statements that are executed by ML/I when it encounters them at the time it is macro
processing. The above example shows one such macro-time statement, the ‘goto’ statement
MCGO. As can be seen, MCGO has an optional conditional clause (MCGO ... IF ...).

A second new feature is the extended use of the % notation to include the insertion of
delimiters (e.g. %D2. meaning delimiter two) and to place labels that are the destination of
the MCGO statements (e.g. %L1. and %L2. above). Unlike other types of insert, the ‘inserting’
of a label does not generate any text — i.e. it has a ‘null’ value.

We will now call SET to show that it works:
48) SET X1 = Y1+Z1

Output) LSS Y1
Output) ADD 71
Output) ST X1
49) SET BROWN = JONES - ROBINSON
Output) LSS SMITH
Output) SUB ROBINSON
Output) ST BROWN

(Note how the JONES macro, defined back in input line 3, is still in existence.)

Variable numbers of arguments

We will now take the last step in the elaboration of macros, and will describe how to use
macros that have a variable number of arguments.

Assume, therefore, that it is required to define a macro called LET, which is similar
to the SET macro except that it can have, to the right of the equals sign, an arbitrary
expression involving additions and/or subtractions. Thus typical calls of LET might be:

LETA=B+C-D+F-G
LET X = Y
LET X X+Y+C+D

When scanning a call of this macro, ML/I first encounters LET and then an equals sign.
It then searches for plus, minus or a newline. If it finds either of the first two it recycles,

i.e. again looks for plus, minus or a newline. If it finds a newline, then that is the closing
delimiter, and thus the call is complete and the replacement text can be generated.

This scheme for searching for delimiters is specified in structure representations by the
use of nodes (the word node is used since the delimiter structure of a macro can conveniently
be represented as a directed graph). A node is placed at a given point in a structure
representation, and can be gone to from the end of any branch in the same structure
representation. Nodes, which are local to the structure representation in which they occur,
are written N1, N2, N3, etc. A node is placed just by writing its name at the appropriate
point within a structure representation, and is gone to simply by placing its name at the
end of a branch; note that there is no explicit ‘goto’. Hence the structure representation of
the LET macro is written:

50) MCDEF LET = N1 OPT + N1 OR - N1 OR NL ALL

Here there is one node, called N1, which is placed before the alternative ‘plus, minus or
newline’. If either the plus branch or the minus branch is taken, the branch ends by going
back to N1. If, on the other hand, the newline branch is taken, the next delimiter is taken
as the one following the ALL. In this case, nothing follows ALL, so this newline is the closing
delimiter.

We shall now consider the problems that arise in specifying the replacement text for the
LET macro. The main problem is that one does not know in advance how many arguments
there will be. The way to deal with this is to write a macro-time loop that takes the
arguments one by one until they have run out. To do this, one needs variables for counting
and subscripting; ML/I caters for this need by supplying three integer variables called T1,
T2 and T3 which are local to each macro call (there also exist permanent, global variables
called P1, P2, etc., as well as others, but these are not of immediate interest here). These
variables are called macro variables, and ML/I contains an assignment statement, MCSET,
for manipulating them. MCGO can be used for testing them. Macro variables or expressions
involving them can be used as subscripts; e.g. if T1 had value 3, then %AT1. would mean
‘insert argument three’ and %DT1 - 1. would mean ‘insert delimiter two’. In addition,
values of macro variables can be inserted as they stand; e.g. %T1. would generate the
character 3.

Using these facilities, the replacement text of the LET macro is written:

51) AS < LSS %A2.

52) MCSET T1 = 3

53) %L4.MCGO L2 IF Y%DT1-1. = +
54) MCGO L5 UNLESS %DT1-1. = -
55) SUB %ATL.

56) MCGO L3

57) %L2. ADD %ATL.

58) %L3.MCSET T1 = T1 + 1

59) MCGO L4

60) %L5. ST %A1,

61) >

and a sample call is:

62) LET A = B-C + D
Output) LSS B

Output) SUB C
Output) ADD D
Output) ST A

Specialised example

As a last example, we shall show a macro which illustrates no new concepts, but which
may be of interest to readers familiar with Polish notation. The macro converts from fully
parenthesised algebraic notation to Polish prefix notation:

63) MCDEF (OPT + OR - OR * OR / ALL)
64) AS <VD1. %Al. %A2.>
65) (A + B)
Output) + A B
66) ((A-(B*C))/(X/Y))
OQutput) / -A*xBC/ XY

In this example, the macro name is a left parenthesis and its closing delimiter is a right
parenthesis. Line 66 above shows a nested and, in fact, recursive call of this macro.

Skips and inserts

This concludes the description of macros as such, and we will end this Guide by clearing
up a few isolated features not already covered. Firstly, we shall consider inserts and skips.

Insert is the name for the % facility. All that remains to be said about this is that,
in a similar manner to literal brackets, the user chooses as the insert marker (i.e. what we
have used % for) an atom or sequence of atoms that do not occur naturally in the text to be
processed. The insert marker is normally defined at the start of the source text, as in input
line 1 above. If it was desired to use // as an insert marker, it would have been defined:

67) MCINS /WITH/ .

(WITH is similar to WITHS, but means that no spaces are allowed between the two atoms it
connects.)

Skips have already been mentioned, in that literal brackets are a special case of a skip.
A skip has, like a macro, an associated structure representation. When ML/I encounters
the name of a skip, it ‘switches off” all the macros until it comes to the closing delimiter of
the skip. The only things that may be recognised within a skip are other skips, and these
are only recognised if the first skip has the M (for matched) option set. What ML/I does to
skips is controlled by two further options: the D option means ‘copy the delimiters to the
output’ and the T option means ‘copy the intervening pieces of text’ (i.e. in macro terms,
the arguments). Hence if, for example, neither D nor T is set, the skip is totally deleted. A
skip is defined thus:

MCSKIP options, structure representation
For example:
68) MCSKIP DT, °

means define the quote sign as a skip name with another quote as the closing delimiter,
and set the D and T options (but not the M option) for it. The following skip would, on the
other hand, be totally deleted since no options are set:

69) MCSKIP , COMMENT ;
The following examples show how these two skips work:

70) ’LET SET JONES’
Output) ’LET SET JONES’

71) COMMENT LET IS A MACRO; °’COMMENT’
Output) >COMMENT”

Searching for delimiters

If ML/T has found a macro name and is searching for its delimiters, it may encounter a
nested macro call or skip. In this case it ‘goes down a level’ and searches for the delimiters
of the nested construction; only when the closing delimiter of this is found does it return
to the original search. Thus, if one wrote the nonsense line:

72) LET A <=> = UNSTACK L + 1; + 7

the second equals and the second plus would be delimiters of the LET macro, since the
first equals is within a skip and the first plus is within a call of the UNSTACK macro. The
nonsensical output from the above has not been shown.

Exclusive delimiters

The reader may wish to skip this Section initially, as it describes a rather complicated
feature of ML/I.

It is sometimes convenient to define a macro or skip so that, after the macro or skip
has been processed, scanning resumes at rather than beyond the closing delimiter; a closing
delimiter with this property is called an exclusive delimiter. An exclusive delimiter is
specified as such by placing the imaginary node NO (N zero) after it.

For example, if it is desired to delete all lines commencing with an asterisk, this can
be done as follows:

73) MCSKIP , NL WITH * NL NO
74) AAA**QK
75) * THIS WILL VANISH
76) * SO0 WILL THIS
77) END
Output) AAA*x0K
Output) END

Here the skip name is a newline immediately followed by an asterisk, and the closing delim-
iter is the next newline. However, when the skip has been processed, scanning resumes at
this closing newline, so this newline is free to form part of a further skip name if an asterisk
occurs at the start of the next line.

In fact, defining newline as part of a macro name or skip name, though often useful,
has many potential pitfalls and it is best avoided by the novice (it will also, for the reader
who is actually using ML/T interactively, tend to upset the interrelation of input lines with
output ones since ML/I will need to keep ‘looking ahead’ a line). It is generally better to
use the ‘startline’ facility, which is described in the ML/I User’s Manual.

10

Operation macros

All the built-in ML/I statements like MCDEF, MCSKIP, MCSET, MCGO etc., have the generic
name of operation macro. Operation macros are analogous to ordinary user-defined macros
in the way they are scanned, but they are different in that they perform some predefined
system action instead of effecting a replacement (they generate no actual output in most
cases). There are many operation macros that have not been covered in this Guide. One
example is MCNOTE, which prints a message together with the current line number, and is
useful for scanning documents and for generating error messages.

Replacement

Note that macro replacement takes place everywhere in the text scanned by ML/I (except
within skips). For example, it takes place within arguments to operation macros (e.g. in
structure representations) and within inserts. In fact, ML /I contains virtually no restrictions
on what one can do and where one can do it. This in many ways contributes to the power
of ML/I, but it does mean that you are not restricted as to the depths of the logical mires
that you can get into, nor in the machine time that you can use trying to make ML/I do
things it was not designed for.

Concluding remarks

We have now come to the end of this Guide. Hopefully, you have reached a stage where,
although your understanding of ML /T is of necessity rather patchy and in some cases super-
ficial, you can still use ML/I in some simple applications and perhaps in some not-so-simple
ones too. After having some experience with ML/I, you may wish to refer to the User’s
Manual to fill in some of the gaps in your knowledge.

