liberasurecode 1.6.4
Erasure Code API library
Loading...
Searching...
No Matches
md5.c
Go to the documentation of this file.
1/*
2 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
3 * MD5 Message-Digest Algorithm (RFC 1321).
4 *
5 * Homepage:
6 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
7 *
8 * Author:
9 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
10 *
11 * This software was written by Alexander Peslyak in 2001. No copyright is
12 * claimed, and the software is hereby placed in the public domain.
13 * In case this attempt to disclaim copyright and place the software in the
14 * public domain is deemed null and void, then the software is
15 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
16 * general public under the following terms:
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted.
20 *
21 * There's ABSOLUTELY NO WARRANTY, express or implied.
22 *
23 * (This is a heavily cut-down "BSD license".)
24 *
25 * This differs from Colin Plumb's older public domain implementation in that
26 * no exactly 32-bit integer data type is required (any 32-bit or wider
27 * unsigned integer data type will do), there's no compile-time endianness
28 * configuration, and the function prototypes match OpenSSL's. No code from
29 * Colin Plumb's implementation has been reused; this comment merely compares
30 * the properties of the two independent implementations.
31 *
32 * The primary goals of this implementation are portability and ease of use.
33 * It is meant to be fast, but not as fast as possible. Some known
34 * optimizations are not included to reduce source code size and avoid
35 * compile-time configuration.
36 */
37
38#ifndef HAVE_OPENSSL
39
40#include <string.h>
41
42#include "md5.h"
43
44/*
45 * The basic MD5 functions.
46 *
47 * F and G are optimized compared to their RFC 1321 definitions for
48 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
49 * implementation.
50 */
51#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
52#define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
53#define H(x, y, z) ((x) ^ (y) ^ (z))
54#define I(x, y, z) ((y) ^ ((x) | ~(z)))
55
56/*
57 * The MD5 transformation for all four rounds.
58 */
59#define STEP(f, a, b, c, d, x, t, s) \
60 (a) += f((b), (c), (d)) + (x) + (t); \
61 (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
62 (a) += (b);
63
64/*
65 * SET reads 4 input bytes in little-endian byte order and stores them
66 * in a properly aligned word in host byte order.
67 *
68 * The check for little-endian architectures that tolerate unaligned
69 * memory accesses is just an optimization. Nothing will break if it
70 * doesn't work.
71 */
72#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
73#define SET(n) (*(MD5_u32plus *)&ptr[(n) * 4])
74#define GET(n) SET(n)
75#else
76#define SET(n) \
77 (ctx->block[(n)] = \
78 (MD5_u32plus)ptr[(n) * 4] | \
79 ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
80 ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
81 ((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
82#define GET(n) (ctx->block[(n)])
83#endif
84
85/*
86 * This processes one or more 64-byte data blocks, but does NOT update
87 * the bit counters. There are no alignment requirements.
88 */
89static void *body(MD5_CTX *ctx, void *data, unsigned long size)
90{
91 unsigned char *ptr;
92 MD5_u32plus a, b, c, d;
93 MD5_u32plus saved_a, saved_b, saved_c, saved_d;
94
95 ptr = data;
96
97 a = ctx->a;
98 b = ctx->b;
99 c = ctx->c;
100 d = ctx->d;
101
102 do {
103 saved_a = a;
104 saved_b = b;
105 saved_c = c;
106 saved_d = d;
107
108/* Round 1 */
109 STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
110 STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
111 STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
112 STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
113 STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
114 STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
115 STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
116 STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
117 STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
118 STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
119 STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
120 STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
121 STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
122 STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
123 STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
124 STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
125
126/* Round 2 */
127 STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
128 STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
129 STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
130 STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
131 STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
132 STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
133 STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
134 STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
135 STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
136 STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
137 STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
138 STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
139 STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
140 STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
141 STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
142 STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
143
144/* Round 3 */
145 STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
146 STEP(H, d, a, b, c, GET(8), 0x8771f681, 11)
147 STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
148 STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23)
149 STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
150 STEP(H, d, a, b, c, GET(4), 0x4bdecfa9, 11)
151 STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
152 STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23)
153 STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
154 STEP(H, d, a, b, c, GET(0), 0xeaa127fa, 11)
155 STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
156 STEP(H, b, c, d, a, GET(6), 0x04881d05, 23)
157 STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
158 STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11)
159 STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
160 STEP(H, b, c, d, a, GET(2), 0xc4ac5665, 23)
161
162/* Round 4 */
163 STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
164 STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
165 STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
166 STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
167 STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
168 STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
169 STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
170 STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
171 STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
172 STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
173 STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
174 STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
175 STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
176 STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
177 STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
178 STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
179
180 a += saved_a;
181 b += saved_b;
182 c += saved_c;
183 d += saved_d;
184
185 ptr += 64;
186 } while (size -= 64);
187
188 ctx->a = a;
189 ctx->b = b;
190 ctx->c = c;
191 ctx->d = d;
192
193 return ptr;
194}
195
196void MD5_Init(MD5_CTX *ctx)
197{
198 ctx->a = 0x67452301;
199 ctx->b = 0xefcdab89;
200 ctx->c = 0x98badcfe;
201 ctx->d = 0x10325476;
202
203 ctx->lo = 0;
204 ctx->hi = 0;
205}
206
207void MD5_Update(MD5_CTX *ctx, void *data, unsigned long size)
208{
209 MD5_u32plus saved_lo;
210 unsigned long used, free;
211
212 saved_lo = ctx->lo;
213 if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
214 ctx->hi++;
215 ctx->hi += size >> 29;
216
217 used = saved_lo & 0x3f;
218
219 if (used) {
220 free = 64 - used;
221
222 if (size < free) {
223 memcpy(&ctx->buffer[used], data, size);
224 return;
225 }
226
227 memcpy(&ctx->buffer[used], data, free);
228 data = (unsigned char *)data + free;
229 size -= free;
230 body(ctx, ctx->buffer, 64);
231 }
232
233 if (size >= 64) {
234 data = body(ctx, data, size & ~(unsigned long)0x3f);
235 size &= 0x3f;
236 }
237
238 memcpy(ctx->buffer, data, size);
239}
240
241void MD5_Final(unsigned char *result, MD5_CTX *ctx)
242{
243 unsigned long used, free;
244
245 used = ctx->lo & 0x3f;
246
247 ctx->buffer[used++] = 0x80;
248
249 free = 64 - used;
250
251 if (free < 8) {
252 memset(&ctx->buffer[used], 0, free);
253 body(ctx, ctx->buffer, 64);
254 used = 0;
255 free = 64;
256 }
257
258 memset(&ctx->buffer[used], 0, free - 8);
259
260 ctx->lo <<= 3;
261 ctx->buffer[56] = ctx->lo;
262 ctx->buffer[57] = ctx->lo >> 8;
263 ctx->buffer[58] = ctx->lo >> 16;
264 ctx->buffer[59] = ctx->lo >> 24;
265 ctx->buffer[60] = ctx->hi;
266 ctx->buffer[61] = ctx->hi >> 8;
267 ctx->buffer[62] = ctx->hi >> 16;
268 ctx->buffer[63] = ctx->hi >> 24;
269
270 body(ctx, ctx->buffer, 64);
271
272 result[0] = ctx->a;
273 result[1] = ctx->a >> 8;
274 result[2] = ctx->a >> 16;
275 result[3] = ctx->a >> 24;
276 result[4] = ctx->b;
277 result[5] = ctx->b >> 8;
278 result[6] = ctx->b >> 16;
279 result[7] = ctx->b >> 24;
280 result[8] = ctx->c;
281 result[9] = ctx->c >> 8;
282 result[10] = ctx->c >> 16;
283 result[11] = ctx->c >> 24;
284 result[12] = ctx->d;
285 result[13] = ctx->d >> 8;
286 result[14] = ctx->d >> 16;
287 result[15] = ctx->d >> 24;
288
289 memset(ctx, 0, sizeof(*ctx));
290}
291
292#endif
#define GET(n)
Definition: md5.c:82
void MD5_Init(MD5_CTX *ctx)
Definition: md5.c:196
#define STEP(f, a, b, c, d, x, t, s)
Definition: md5.c:59
#define SET(n)
Definition: md5.c:76
#define F(x, y, z)
Definition: md5.c:51
#define I(x, y, z)
Definition: md5.c:54
void MD5_Update(MD5_CTX *ctx, void *data, unsigned long size)
Definition: md5.c:207
#define G(x, y, z)
Definition: md5.c:52
static void * body(MD5_CTX *ctx, void *data, unsigned long size)
Definition: md5.c:89
#define H(x, y, z)
Definition: md5.c:53
void MD5_Final(unsigned char *result, MD5_CTX *ctx)
Definition: md5.c:241