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Chapter 1

INTRODUCTION

Isogeometric analysis, introduced by Hughes et al.
1
, is gaining popularity as an alterna-

tive to traditional finite analysis methods. In an isogeometric analysis the interpolation
functions use NURBS

2
or a variation thereof instead of the more traditional Lagrange

interpolation or other types of local polynomial approximation. Both rely on use of
parametric interpolation to represent both coordinates and the dependent variables.
Both also commonly use an isoparametric interpolation to map element shapes be-
tween the parent and global coordinate domains. Isogeometric methods permit the use
of approximations that can be Cp continuous in the analysis domain. The method is
described fully in the book by Cottrell et al..

3
Additional information on isogeometric

analysis may be found in References4–23

FEAP has been adapted to permit the specification of the analysis region using tensor
product NURBS patches. The current implementation includes a library of elements
capable of solving problems in solid and structural mechanics. In addition thermal
problems may also be solved.

The description of the data to solve a thermal, solid or structural mechanics problem
utilizing FEAP is described in the companion User Manual

24
. Many of the commands

necessary to solve a problem using an isogeometric description are the same. However,
there are some important differences existing and this manual serves as a supplement
to the FEAP User manual. All manuals are maintained on-line at the web site

projects.ce.berkeley.edu/feap

and should be consulted from time-to-time to obtain any description of new features.

1
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1.1 NURBS interpolation on a line

Before describing how the data is prepared for an isogeometric analysis using FEAP
it is important to understand how parametric interpolation is performed. Here we
discuss the basic aspects using a one-dimensional interpolation along a line. The basic
forms include use of a parametric description in terms of a parent coordinate, u. The
parametric coordinate is used to describe a knot vector with m values. In the current
FEAP implementation only open knot vectors are implemented (this could change in
future). An open knot vector is described by an increasing sequence of values. For
example one may have the knot vector with m = 8 values

U =
[
0 0 0 0.25 0.8 1 1 1

]
The first an last values of an open knot vector are repeated m times and will describe
a polynomial of degree p = m− 1. Thus the above knot vector is capable of describing
a quadratic polynomial. Knot vectors for which the individual knots are placed at
equal intervals along the parent coordinates are called uniform knot vectors. Those in
which the intervals vary are called non-uniform knot vectors. In isogeometric analysis
increments along the knot vector describe individual element intervals. Thus the above
knot vector would describe three element intervals: [0 0.25]; 0.25 0.8; and [0.8 1]. The
introduction of each knot lowers the continuity of the polynomial interpolation by one
(1). Thus, at the location of the knots 0.25 and 0.8 the continuity is reduced from two
to one. Thus, the second derivative of the (as yet undefined polynomial function) will
have a slope discontinuity at the knot points. If an additional knot is inserted at 0.25
giving the new knot vector

U =
[
0 0 0 0.25 0.25 0.8 1 1 1

]
no new element interval is created (i.e., there are still only three element intervals) but
the continuity is reduced to degree 1 at 0.25 and a slope discontinuity may now exist
in the first derivative.

An polynomial function for a knot vector may be created using B-splines
2
. A B-spline

may be described starting with

Bi,0(u) =

{
1; ifui ≤ u < ui+1

0; otherwise

followed by the recursion

Bi,p(u) =
u− ui
ui+p − ui

Bi,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Bi+1,p−1(u)

Note the interpolation is described in terms of the knot locations of U and each evalu-
ation of the recursion adds one additional function. In the recursion the ratio 0/0 can
occur and is defined as 0. The basis functions Bi,0 are piecewise constants. Thus the
first recursion will create piecewise continuous linear polynomials.
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Example 1:

Consider the knot vector U =
[
0 0 1 1

]
. This has the zeroth order basis functions

N0,0 = 0 ; −∞ < u <∞

N1,0 =

{
1 ; 0 ≤ u < 1
0 ; otherwise

N2,0 = 0; −∞ < u <∞

Applying the recursion formula gives

N0,1 =
u− 0

0− 0
N0,0 +

1− u
1− 0

N1,0 =

{
1− u ; 0 < u < 1
0 ; otherwise

N1,1 =
u− 0

1− 0
N1,0 +

1− u
1− 1

N2,0 =

{
u ; 0 < u < 1
0 ; otherwise

These are identical to the linear Lagrange polynomials and are only C0 continuous.
The open knot vector of a C0 function has only two repeated first and last entries.
Results using such a form in an isogeometric formulation will produce identical results
to linear order Lagrange elements. Thus an isogeometric analysis usually implies use
of quadratic an higher order description of open knot vectors.

The interpolation of the coordinates along the line is given by

x =
n∑
i=1

Bi,p x̃i where n = m− p− 1

The parameters x̃i are called control points and take the place of the nodes of a tra-
ditional finite element analysis. There are fundamental differences between control
points and nodes.

Example 2:

As an example let us consider the description of a parabolic line using quadratic degree
interpolation and three equal size elements in the parametric domain. For a standard
finite element interpolation we use the three Lagrange shape functions

25

N1(ξ) = 1
2
(ξ2 − ξ)

N2(ξ) = 1
2
(ξ2 + ξ)

N3(ξ) = (1− ξ2)

The specific parabola is defined on the interval −12 ≤ x ≤ 12 which has altitude y = 9
at x = 0 and end values y = 0 at x = ±12. The location of the nodes for a Lagrange
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Figure 1.1: Lagrange interpolation of a parabola

interpolation are placed at 7 points equally spaced along the x-axis with values

x̃1 =

{
−12

0

}
; x̃2 =

{
−8

5

}
; x̃3 =

{
−4

8

}
; x̃4 =

{
0
9

}
x̃5 =

{
4
8

}
; x̃6 =

{
8
5

}
; x̃7 =

{
12
0

}
A plot of the line using the Lagrange interpolation is shown in Fig. 1.1. The C0 nodes
are shown as black dots and the internal nodes for N3 by white dots. In the (b) part
of the figure we show the individual elements and their associated nodes.

Next we consider the same parabola where the interpolation is performed using quadratic
B-spline interpolation. To create three elements we use the knot vector

U =
[
0 0 0 1

3
2
3

1 1 1
]

Applying the recursion formula generates creates only 5 unique functions as shown
in Fig. 1.2. The location of the control points to construct the desired parabola are
located at

x̃1 =

{
−12

0

}
; x̃2 =

{
−8

6

}
; x̃3 =

{
−0
10

}
; x̃4 =

{
8
6

}
; x̃5 =

{
12
0

}
These produce the parabola shown in Fig. 1.3.

There are distinct differences between B-spline interpolation and Lagrange interpola-
tion. Except for the end points of an open knot the control points do not lie on the
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Figure 1.2: Quadratic B-spline for quadratic knot with three elements. Generates
5-functions.

curve of the parabola. Moreover, the description of each element involves control points
that overlap between elements – this is what allows for the increased continuity. Last,
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(b) Quadratic B-spline elements.

Figure 1.3: B-spline curve for parabola.
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we observe that the B-spline functions are positive everywhere. The sum of all the
B-splines of a order p always equals one, thus B-splines are a partition of unity. There
are other aspects related to the use of spline interpolation, these are discussed in the
references cited above.

1.1.1 NURBS functions and Bézier extraction

Non-uniform rational B-splines (or simply NURBS) utilize an additional parameter to
describe the control point – these are positive weights wi. The NURBS functions are
defined as

Ni,p(u) =
Bi,p(u)wi∑n
j=1Bj,p(u)wj

Use of the weights allows for shapes of different types, including circular arcs. If all
the weights are unity, the denominator sums to one and B-splines are recovered.

The construction of the B-spline functions using the recursion formula is awkward and
can become time consuming for high-degree functions. An alternative is to use Bézier
extraction to relate the B-spline functions in each non-zero knot interval to Bernstein
polynomials. This is described in detail by Borden et al.

26
. For each knot interval a

p+ 1× p+ 1 matrix Ce may be described such that

Bi,p(ξ) = Ce
ijbj,p(ξ)

where the bj,p are Bernstein polynomials. For quadratic polynomials on the element
interval −1 ≤ ξ ≤ 1 the Bernstein polynomials are

b1,2 = 1
4
(1− ξ)2

b2,2 = 1
4
(1 + ξ)2

b3,2 = 1
2
(1− ξ2)

Use of Bézier extraction greatly simplifies the construction of shape functions once the
extraction matrices Ce are known. The extraction matrices are defined by a simple
knot insertion algorithm as described in Piegl & Tiller

2
.

Higher dimensional interpolation may be defined by taking products of the one-dimensional
form in each desired coordinate direction. These are called tensor product forms and
currently form the basis for nearly all the developments currently available in FEAP.

With this brief set of preliminaries, we now describe how the data is prepared for a
NURBS based solution using FEAP.



Chapter 2

NURBS mesh description

We describe how to define a tensor product NURBS patch for a FEAP analysis. Tensor
product patches may be described for one, two or three dimensional applications.

2.1 Control information: Start of problem

The start of an analysis begins with the standard FEAP control information. However,
for some element forms special care is needed in setting the number of degrees of
freedom (NDF). The the control data consists of two lines:

FEAP * * <any description of the problem>

NUMCP NUMEL NUMMAT NDM NDF NEN

where

NUMCP = Number of control points

NUMEL = Number of elements

NUMMAT = Number of material sets

NDM = Mesh spatial dimension

NDF = Maximum number of degrees of freedom/control point

NEN = Maximum number of control points on an element

Using the data preparation approach described below for an isoparametric analysis the
number of control points (NUMCP), elements (NUMEL) and size of an element (NEN) are
generally not known at the start of an analysis. This is due to the specified order of
elevation of the knot vector and/or the number of inserted knots; each of which are

7
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operations that may be performed using FEAP command instructions described in
later sections of this report. Accordingly, these values should be set to zero, FEAP
will assign values as the mesh for the problem is constructed.

For solution of problems using the displacement form of solid elements the value of
NDM = NDF (or more). For thermal analyses the values of NDM is the spatial dimension
of the problem and NDF = 1 (or more). These are identical to the usual finite element
analysis values as described in the FEAP User manual

24
.

For MIXED solid elements (those based on a u-p-θ formulation as described in refer-
ences25 and23) the value of NDF must be set to NDM+1. Thus for a three dimensional
analysis using the mixed solid elements the control data is input as

FEAP * * <title information for mixed analysis>

0 0 0 3 4 0

For analyses using the Kirchhoff-Love thin element the parameters are set as NDM = 3
and NDF = 3 or more. Thus for the shell the control records are set as

FEAP * * <title information for shell analysis>

0 0 0 3 3 0

Note it is not necessary to provide the number of nodes, elements, material sets or
nodes/element. These will be determined based on the subsequent input data provided.

Alternatively, the above statements now may be given for the mixed solid as

FEAP * * <title information for mixed solid analysis>

ndm = 3

ndf = 4

and for the shell as

FEAP * * <title information for shell analysis>

ndm = 3

ndf = 3

nad = 2

If the solid is encased in a shell the parameters are given as

FEAP * * <title information for solid & shell analysis>

ndm = 3

ndf = 4

nad = 2
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2.2 MATERIAL set description

The specification of material properties generally follows the descriptions described in
the FEAP User Manual

24
. The types of elements available are:

SOLId - Solid DISPlacement or MIXEd types

THERmal - Fourier heat conduction

NURB_THIN_SHELL - Kirchhoff-Love thin shell

NURB_SLOPE - Slope enforcement for K-L shell

PRESsure - Pressure or traction loading on surface

USER enum

Note that the required specification for the element type must include all the letters
given in upper case above.

A NURBS solution may be used for both small and large displacement solid elements
of type DISPlacement or MIXEd only. The thin Kirchhoff-Love shell formulation is
specified by NURB THIN SHELL for both the large and small displacement formulation.

2.2.1 Activation of NURBS interpolations

Activation of the NURBS option is given during the specification of the MATErial

property data by including the statement

NURBs interpolation q1 q2 q3

as part of the data specification. The parameters q1, q2, q3 denote quadrature order
in each direction of the tensor product patch. For two dimensional problems it is not
necessary to specify q3.

2.2.2 SOLId element material sets

To solve a problem using SOLId type elements the material data set is given as:

MATErial ma

SOLId

<ELAStic, PLAStic, VISCoelastic, etc. material model>

NURBs <option> q1 q2 q3

! Blank end record
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Currently, the option parameter is not used. In future it will be used to specify the
type of interpolation form (T-spline, etc.). The values of q1, q2 and q3 are the number
of quadrature points in the 1,2 and 3 directions (currently, between 1 and 5).

Specific forms of data for constitutive models, body forces, etc. are described in the
FEAP User Manual.

24

2.2.3 THERmal element material sets

To solve a problem using the THERmal type elements the material data set is given as:

MATErial ma

THERmal

FOURier <isotrop, orthotropic ...>

<additional data such as DENSity ...>

NURBs <option> q1 q2 q3

! Blank end record

The values of q1, q2 and q3 are the number of quadrature points in the 1,2 and 3
directions (currently, between 1 and 5).

Description of the material models, etc. is again in the FEAP User Manual.

2.2.4 NURB THIN SHELL element material sets

To solve a problem using Kirchhoff-Love thin shell type elements the material data set
is given as:

MATErial ma

NURB_THIN_SHELL

<ELAStic, PLAStic, VISCoelastic, etc. material model>

THICkness SHELL h

NURBs <option> q1 q2 q3

<FINIte, SMALl>

! Blank end record

Here the values of q1 and q2 are the number of quadrature points in the 1 and 2
directions of the surface patch describing the element (currently, between 1 and 5).
The value of q3 is the number of quadrature points in the shell thickness direction and
must be 2 or more. The commands FINIte and SMALl are used to denote the large
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displacement and small displacement forms, respectively. However, if the material
model applies only to finite deformation, for example

ELAStic NEOHook E_mod nu

then the FINIte is automatically selected.

Descriptions for the material models, body loading, etc. are again in the FEAP User
Manual (e.g., see Chapter 7 for material model types available).

2.2.5 NURB SLOPE element material sets

The constraint of slope between NURBS patches is enforced by the user element ELMT27
and is accessed using the material set commands

MATErial ma

NURB_SLOPE

PENAlty,,pen_value

QUADrature <NODE, NODAl, GAUSs>

! Blank end record

The number of quadrature points for all forms is 2. In addition, the number of degree-
of-freedoms at a node must be increase to 4 in order to provide storage for the constraint
forces. The constraint maintains the initial angle defined by the two patches during the
entire solution based on control points only that define a 6-node constraint element.
Note, the slope enforcement involves a non-linear relation, thus, a non-linear solution
method is required using, for example

LOOP,,20 ! or some number

TANG,<LINE>,1

NEXT

2.2.6 PRESsure: Dead and Follower loads

The pressure load element is specified by material set records:

MATErial ma

PRESsure

LOAD p prop-ld
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ELMT Description
1 NURBS Euler-Bernoulli beam
2 NURBS 1-d rod.
3 NURBS 1-d displacement boundary condition
5 NURBS & T-spline thin C1 plate
6 NURBS & T-spline thin membrane

20 Follower couple to load thin shell element
24 NURB THIN SHELL - Kirchhoff-Love shell
37 NURB SLOPE - Slope compatibility enforcement

Table 2.1: User elements for NURBS/T-spline solutions.

NURBs quadr q1 q2

<PLOT,NOPLot> ! PLOT/NOPLot surface: Default NOPLot

<PLANe,AXISym> ! 2-d types: Default PLANe

<DEAD,FOLLower>! Default DEAD

...

Loading is specified by options LOAD and, for follower loads by FINIte or FOLLower.
Loading intensity may be associated with the proportional loading number prop-ld.
The NURBs option specifies the quadrature order to use in the two surface directions
of a 3-d problem. For 2-d problems the second value is not used since the surface has
only one-dimension.

2.2.7 USER element material sets

User elements are also provided but vary with specific releases. The basic input form
is

MATErial ma

USER e_num

<user element data>

! Blank end record

The e num parameter is the number of the specific user element used. That is if
ELMT04.f is used then e num = 4.

A number of user elements have been added as described in Table 2.1.
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2.3 NURBS patch input

Tensor product NURBS patches are defined by specifying the control point data us-
ing the NURB command; the knot vector in each direction using the KNOT command;
and the NPATch command which includes a list of control points to define the patch.
Descriptions for specifying a patch for a line, surface or solid is described below.

Alternatively, the patch may be defined using the NBLOck command and the NSIDe

command as described in Appendix B. Descriptions for specifying each of these data
types is provided below.

A NURBS patch may be specified using the minimum number of control points, order
of knot vectors and sides necessary to describe the exact geometry. This description
may be subsequently refined by raising the order of the knot vectors (knot elevation)
and specifying additional knot points (knot insertion) necessary to produce an accurate
answer (this is commonly called a k-refinement).

2.3.1 NURBS control point specification

The control points for a patch are described by the NURBs data. Input of the control
points uses the same command structure as for input of COORdinate data with added
need to specify the weight for the control point. Data sets are input as:

NURBs

n1 ng1 (x(i,n1),i = 1,ndim) w(n1)

n2 ng2 (x(i,n2),i = 1,ndim) w(n2)

....

! terminate with blank record

where ndim is the mesh spatial dimension and ng1, ng2 are increments to the control
point numbers. For example, the two pairs shown above will generate the sequence of
control points

n1, n1+ng1, n1+2*ng1, ..... , n2

with values for coordinates and weights linearly interpolated between the two specified
values.



CHAPTER 2. NURBS MESH DESCRIPTION 14

2.3.2 KNOT vector specification

Currently four types of knot vectors may be used to construct NURBS patches: CLAMped
(open) knot vectors; UNCLamped knot vectors; LCLAmped knot vector which is
clamped at the start values and unclamped at the end value; and RCLAmped which
is unclmaped at the start value and clamped at the end value. Clamped (open) knot
vectors are interpolatory at an end control point whereas unclamped knot vectors are
not interpolatory unless the knot vector is repeated to give a C0 point. However, un-
clamped knot vectors may be used to create closed surfaces or to maintain greater than
C0 continuity between patches.

CLAMped (OPEN) knot vectors

Open knot vectors are specified by the records:1

KNOTs
CLAMp n1 lknot1 (vk1(i),i=1,lknot1)
CLAMp n2 lknot2 (vk2(i),i=1,lknot2)
....
! terminate with blank record

where n1 is the knot number, lknot1 is the length of the knot vector and vk1(i) is
the list of open knot values. Recall that only 16 items can appear on any record, thus,
if the knot vector has more than 13 data entries the next 16 appear on the following
line, etc. until all the values are provided. Open knot vectors must begin and end with
repeated values of one more than the order of the knot. An example for two quadratic
knot vectors is

CLAMp 1 6 0.0 0.0 0.0 3.0 3.0 3.0
CLAMp 2 7 0.0 0.0 0.0 0.5 1.0 1.0 1.0

Generally, one may start the knot at 0.0 and go to any end value desired. However,
the knot values must appear in ascending order.

The specification of real values for FEAP do not need to include the decimal point.
Thus, the above knot vectors may also be given in the simpler form

CLAMp 1 6 0 0 0 3 3 3
CLAMp 2 7 0 0 0 0.5 1 1 1

UNCLamped (periodic) knot vectors

An unclamped knot vector is specified in FEAP using the input form

1A clamped knot may also be specified by the type OPEN.
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KNOTs
UNCLamp n1 lknot1 order1 (vk1(i),i=1,lknot1)
UNCLamp n2 lknot2 order2 (vk2(i),i=1,lknot2)
....
! terminate with blank record

Similarly the mixed types may be specified as

KNOTs
LCLAmp n1 lknot1 order1 (vk1(i),i=1,lknot1)
RCLAmp n2 lknot2 order2 (vk2(i),i=1,lknot1)

For an LCLAmp type the initial values of the vk1(i) array must be repeated for i=1,

order1+1 times; and vice versa for the RCLAmp type (the last order2 of the vk2(i)

array must have the same value).

It is also possible to mix types within the same KNOTs group (i.e., some may be open

while others are uncl). Note that an extra field is required to set the order since
knot vector values are not repeated at the beginning and end of the vk1(i) sequence.
An unclamped knot vector may be used to create a closed surface with Cp continuity
(where p is one less than the order) by setting the coordinates of the start and end order

control points to the same value. For this case the beginning and ending overlapped
knot spacings must be the same.

In general the UNCLamped, LCLAmp and RCLAmp types in FEAP can not create conic
sections.

To close a surface using unclamped knots it is necessary to start with uniform knot
spacing and overlap the last order1 control points – that is they must have the same
coordinate values. To merge (join) the control points of the mesh to have the same
node number, the standard

TIE

command is used (see User Manual for details
24

). Always use a graphical check for the
mesh input to ensure that surfaces actually are closed.

Example: Closed ring To illustrate the use of clamped and unclamped
knows in creating a closed ring we consider the shapes shown inf Fig. 2.1.
The left figure shows the control polygon and ring (which is a not a perfect
circle since all the control weights are unity). The red marked control point
is a location that can only be C0 (after a TIE). The right figure shows
the same ring using an unclamped knot vector. The red marked portion
denotes control points that are over-lapped to preserve the continuity (again
after a TIE). Figure 2.2 shows the spline functions for each of clamped and
unclamped knots. There are eleven (11) functions for each form, however,
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due to the overlap of the control points three (3) of the functions are in fact
continuations as the number indicate. The data for the clamped knot and
control points is given by:

NURBs
1 0 -4.5949E+01 -1.1093E+02 1.0000E+00
2 0 1.6973E+01 -1.2293E+02 1.0000E+00
3 0 5.0920E+01 -1.2293E+02 1.0000E+00
4 0 1.2293E+02 -5.0920E+01 1.0000E+00
5 0 1.2293E+02 5.0920E+01 1.0000E+00
6 0 5.0920E+01 1.2293E+02 1.0000E+00
7 0 -5.0920E+01 1.2293E+02 1.0000E+00
8 0 -1.2293E+02 5.0920E+01 1.0000E+00
9 0 -1.2293E+02 -5.0920E+01 1.0000E+00

10 0 -7.4925E+01 -9.8929E+01 1.0000E+00
11 0 -4.5949E+01 -1.1093E+02 1.0000E+00

KNOTs
CLAMp 1 15 0 0 0 0 1 2 3 4 5 6 7 8 8

8 8 ! limit of 16 items/record

NPATch
LINE 1 11 1
1 2 3 4 5 6 7 8 9 10 11

(a) Clamped knot (b) Unclamped knot

Figure 2.1: Close ring using clamped and unclamped knot vector. The red control
point of (a) is C0 and the red overlap of (b) maintains the C2 continuity of the cubic
curve.
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(a) Clamped B-splines (b) Unclamped B-splines

Figure 2.2: Close ring B-splines for clamped and unclamped knot vector.

Similarly, for the unclamped case the data is given by

NURBs
1 0 -1.2293E+02 -5.0921E+01 1.0000E+00
2 0 -5.0921E+01 -1.2293E+02 1.0000E+00
3 0 5.0921E+01 -1.2293E+02 1.0000E+00
4 0 1.2293E+02 -5.0921E+01 1.0000E+00
5 0 1.2293E+02 5.0921E+01 1.0000E+00
6 0 5.0921E+01 1.2293E+02 1.0000E+00
7 0 -5.0921E+01 1.2293E+02 1.0000E+00
8 0 -1.2293E+02 5.0921E+01 1.0000E+00
9 0 -1.2293E+02 -5.0921E+01 1.0000E+00

10 0 -5.0921E+01 -1.2293E+02 1.0000E+00
11 0 5.0921E+01 -1.2293E+02 1.0000E+00

KNOTs
UNCL 1 14 3 0 1 2 3 4 5 6 7 8 9 10 11 12
13 14 ! limit of 16 items/record

NPATch
LINE 1 11 1

2.3.3 NPATch specification

One dimensional patch

For a one dimensional block the command is given as
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NPATch

LINE ma np kn

cp(1) cp(2) .... cp(np)

where ma is the patch material set number, np the number of control points defining the
line and kn the knot number of the line. The list cp defines the control point numbers.

Example: 1-d NURBS Patch

As an example consider again the parabola shown in Fig. 1.1(a). The input
data using NPATch becomes:

NURBs

1 0 -12.0 0.0 1.0

2 0 0.0 18.0 1.0

3 0 12.0 0.0 1.0

KNOTs

open 1 6 0.0 0.0 0.0 1.0 1.0 1.0

NPATch

SURFace 1 3 1

1 2 3

1 2 3

4 5 6

Figure 2.3: Two dimensional NURBS surface patch
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Surface patch

Surface patches may be used to define either a two dimensional solids problem or a
three dimensional shell surface. The surface patch of NURBS is specified using the
command statements

NPATch

SURFace ma np1 np2 kn1 kn2

cp(1,1) cp(2,1) .... cp(np1,1)

cp(1,2) cp(2,2) .... cp(np1,2)

....

cp(1,np2) ...........cp(np1,np2)

In the above ma is the material number for the patch; np1, np2the number of control
points along the two sides of the mesh; kn1, kn2 the knot vectors in the two directions
of the patch; and cp(i,j) are the NURBS control point numbers in which ’i’ is in the
1-direction and ’j’ is in the 2-direction.

Example: 2-d NURBS Patch

As an example consider again the patch shown in Fig. 2.3. The input form
using the NPATch option becomes:

NURBs

1 0 0.0 0.0 1.0

2 0 40.0 0.0 1.0

3 0 100.0 0.0 1.0

4 0 0.0 140.0 1.0

5 0 40.0 140.0 1.0

6 0 100.0 140.0 1.0

KNOTs

open 1 4 0.0 0.0 1.0 1.0

open 2 5 0.0 0.0 0.5 1.0 1.0

NPATch

SURFace 1 2 3 1 2

1 4

2 5

3 6

Solid patch

A three dimensional solid patch may be defined using the commands
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NPATch

SOLId ma np1 np2 np3 kn1 kn2 kn3

cp(1,1) cp(2,1) .... cp(np3,1)

cp(1,2) cp(2,2) .... cp(np3,2)

....

cp(1,np1) ...........cp(np3,np1)

cp(1,np1+1) .........cp(np3,np1+1)

....

cp(1,2*np1) .........cp(np3,2*np1)

cp(1,2*np1+1) .......cp(np3,2*np1+1)

....

cp(1,3*np1) .........cp(np3,3*np1)

cp(1,3*np1+1) .......cp(np3,3*np1+1)

....

....

cp(1,np1*np2) .......cp(np3,np1*np2)

Where ma is the material number, np1, np2, np3, are the number of control points in
the three directions of the block, and kn1, kn2, kn3 are the knot vector numbers in
the three directions.

For a simple rectangular block the input data is given by

2

1

3

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2.4: Three dimensional NURBS solid patch
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NURBs

1 0 0.0 0.0 0.0 1.0

2 0 0.0 0.0 10.0 1.0

3 0 5.0 0.0 0.0 1.0

4 0 5.0 0.0 10.0 1.0

5 0 10.0 0.0 0.0 1.0

6 0 10.0 0.0 10.0 1.0

7 0 0.0 6.0 0.0 1.0

8 0 0.0 6.0 10.0 1.0

9 0 5.0 6.0 0.0 1.0

10 0 5.0 6.0 10.0 1.0

11 0 10.0 6.0 0.0 1.0

12 0 10.0 6.0 10.0 1.0

KNOTs

open 1 6 0.0 0.0 0.0 1.0 1.0 1.0

open 2 4 0.0 0.0 1.0 1.0

open 3 4 0.0 0.0 1.0 1.0

NPATch

SOLId 1 3 2 2 1 2 3

1 2

3 4

5 6

7 8

9 10

11 12

2.3.4 Example: Two dimensional curved beam

The complete data for a curved beam loaded by an end shear is given in Table 2.2 and
shown in Fig. 2.5.

2.4 Traction surface loading

The application of surface loading by specified traction involves computation of the
term

Πext =

∫
Γt

δu T̄ dΓ
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for cases where the traction T̄ is specified on the reference configuration. For cases in
which the traction is specified on the deformed configuration the loading is obtained
from

Πext =

∫
γt

δu t̄ dγ

and then often also requires computation of a tangent term.

At present FEAP includes only the first option for some special cases.

2.4.1 NSURface loading

The NSURface loading option is restricted to normal loading applied to straight edges of
two dimensional NPATch region. The can be specified by a linear or quadratic Lagrange
interpolation between specified end points. For linear variation the data is given as

NSURface

SIDE LINEar nside

1 x1 y1 p1

2 x2 y2 p2

and for quadratic variation by

1

23

4

56

Figure 2.5: Curved beam mesh description.
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FEAP * * Curved beam NURBs solution
0 0 0 2 2 0

MATE
solid

elastic isotropic 1.e5 0.25
nurb interp 3 3

EBOUndary
1 0 1 0
2 0 1 0

EDISplacement
2 0 0.1 0.0

CBOUndary
node 0 5 1 1

KNOTs
open 1 4 0.00 0.00 1.00 1.00
open 2 6 0.00 0.00 0.00 1.00 1.00 1.00

NURBs
1 0 5.0 0.0 1.00
2 0 5.0 5.0 1/sqrt(2)
3 0 0.0 5.0 1.00
4 0 10.0 0.0 1.00
5 0 10.0 10.0 1/sqrt(2)
6 0 0.0 10.0 1.00

NPATch
SURFace 1 3 2 2 1

1 2 3
4 5 6

END

Table 2.2: Input data for 2-d curved beam.

NSURface

SIDE QUADratic nside

1 x1 y1 p1

2 x2 y2 p2

3 x3 y3 p3

where x3, y3 is an intermediate point between x1, y1 and x2, y2. The parameter
side refers to a specific NSIDe number.
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2.4.2 NLOAd patch loading

The NLOAd option permits a constant traction loading to be specified on any face of
a two or three dimensional NPATch. Table 2.3 indicates how faces are numbered on
patches. For two dimensional patches the side numbers also are denoted as shown in
Figure 2.6 where the 1 and 2 directions are associated with the knot directions.

This option produces dead loading only (i.e., loads associated with the reference con-
figuration). The advantage over use of PRESsure material sets (see Sect. 2.2.6) results
from only one computation to compute effective control point forces. Whereas, loads
from the pressure set are computed for each iteration in the solution by integration over
the affected surface. Pressure set loading, however, can be computed on the current
configuration as follower type loads.

Face 2 Dimensions 3 Dimensions
1 +1 knot +1 knot
2 +2 knot +2 knot
3 -1 knot +3 knot
4 -2 knot -1 knot
5 – -2 knot
6 – -3 knot

Table 2.3: Face numbers for NPATch patches.

1

2

Side 1Side 3

Side 2

Side 4

Figure 2.6: Side designation for a two dimensional NURBS patch.
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Three options for loading direction are available: NORMal, TRACtion and USER. The
USER option requires the addition of a user prepared subprogram, although a sample
is available for uniform tension in the x1 coordinate direction of an infinite domain
containing a circular hole of radius R. For the NORMal option the data is specified as

NLOAd

NORMal patch face pressure prop-num

where patch is the number of the NPATch; face is the face number on the patch;
pressure is the normal traction acting on the face and prop-num is a proportional
load number for time dependent loading.

For the TRACtion option the data is specified as

NLOAd

TRACtion patch face traction direction prop-num

where traction is the intensity of the specified traction; direction the global direction
of application and prop-num is a proportional load number for time dependent loading.

For the USER option the data is specified as

NLOAd

USER patch face value-1 value-2 prop-num

where value-1 and value-2 are two user available parameters and prop-num is a
proportional load number for time dependent loading.

2.5 NURBS mesh refinement

Generally, the initial input data defining the geometry of the problem is not sufficient
for an accurate analysis. It may be necessary to elevate the order of the NURBS
approximation for the patches or to insert additional knot values in the knot vectors.
To perform these steps by hand is a tedious and error prone process. The current
implementation in FEAP permits both steps to be performed using solution ‘Command
Language’ statements. These are generally given in a batch solution.

2.5.1 Degree ELEVation

To raise the polynomial order of one B-spline defining a NURBS the solution command
set



CHAPTER 2. NURBS MESH DESCRIPTION 26

BATCh

ELEVate PATCh blk dir incr

END

may be used. The parameters are: blk is the patch number; dir is the direction
in the patch to elevate; and incr is the order increment to increase. Execution of
these commands creates a file named: NURBS mesh that contains the new set of control
points, side lists, knot vectors and patches. At this stage only one direction in one
patch has been elevated and it is necessary to repeat the process for other patches and
directions. The process of repeating the process can be performed using the FEAP
input LOOP-NEXT commands.

Multiple elevations

In addition to preparing the input file for the original problem description, the process
of performing several elevations can be accommodated easily by preparing an additional
mesh input file with the structure

FEAP <optional title information>

0 0 0 ndm ndf nel

MATE <all material properties included in original mesh

INCLude NURBS_mesh

END

STOP

Then prepare a third input file that has the form:

INCLude I<original mesh>

BATCH

ELEVate PATCh pat1 dir1 incr1

END

INCLude I<NURBS_mesh>

BATCh

ELEVate PATCh pat2 dir2 incr2

END

etc. for other patches/directions
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where I<NURBS mesh> is the name of the second input file containing the INCLude

NURBS mesh statement. The analysis is initiated by specifying the third file as the
solution input file. After the processing of the original mesh the subsequent processes
may all use the file containing the NURBS mesh include. Using parameters and looping
structures such as

PARAmeter

d = 1

LOOP,2

PARAmeter

d = d + 1

INCLude I<NURBS_mesh> ! File with INClude NURBS_mesh

BATCh

ELEVate PATCh 1 d 2

END

NEXT

would elevate the second and third directions of three-dimensional patch 1 by two
orders.

2.5.2 KNOT insertion

To insert knots the command set

BATCh

INSErt PATCh pat dir value rr

END

may be use. The parameters are: pat is the patch number; dir the knot direction in
the patch; value the location in the knot vector to perform an insertion; and rr the
number of times to repeat the insertion.

Each use of an INSErt set again results in a new NURBS mesh. Multiple insertions can
again be performed using the above loop structure. For meshes that perform several
knot insertions some time may elapse before the final NURBS mesh file is created.

After several elevations and insertions, the final NURBS mesh file contains an isogeo-
metric problem description suitable for analysis. The analysis can be performed using
an input file containing the INCLude NURBS mesh along with boundary conditions and
loading specification. This is now a standard FEAP solution process and any of the
solution options described in the User Manual may be used. Recall that the activation
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of a NURBS analysis in an element is controlled by a statement in the MATErial set
data:

MATE ma

....

NURBs,,q1,q2,q3

....

2.6 Multiple NURBS blocks

Problems may be solved using multiple NURBS blocks. However, the edge or boundary
of contiguous blocks must have the same control point topology – the topology in other
directions may be different.

If multiple blocks are used, prior to any solution commands it is necessary to merge
the blocks into a single problem using the TIE command. This command appears after
the END of mesh command, thus, the general form is:

FEAP * * <title information

0 0 ....

<mesh data>

END ! End of mesh

TIE

<solution commands>

2.6.1 Slope compatibility enforcement for thin shells: NTIE

For the thin shell element use of the TIE command results in a moment-less hinge
between the patches. In order to restore slope compatibility between patches it is
necessary to add the command NTIE after the TIE command. It is possible enforce
slope compatibility between specific patches or to enforce it between all shell patches.
To enforce a compatibility between individual patches the command is given as

TIE

NTIE

PATCh p1 p2 ma

where p1 and p2 are the two patches and ma is the material set number for the
NURB SLOPE material set (see Section 2.2).

To enforce compatibility between all patches the command is given as
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TIE

NTIE

ALL ma

where ma is the material set number for the NURB SLOPE material set (see Section 2.2).

2.7 OUTMesh: Output of IgA mesh

Once a final mesh for a problem is created the data sets may be saved to a file using
the command:

OUTMesh

The output is written to either a file Ixxxx.rev if no profile oprimization was specified
or Ixxxx.opt if profile optimization was specified prior tothe OUTMesh command. The
character string xxxx contains the name of the file initially specified in the IgA FEAP
run. The written file contains the following input data sets:

MATErials ! any material sets specified

NURBS ALL ! with coordinates and weights for each node

ELEMents ! with nodal connections for each element

ENURBs ! a data set defining location and number of knots

KNOTs ! with list of knot vector data

.... ! any specified loads, displacements, and/or b.c.

The only solution command contained in the file is INTEractive.

2.8 Surface extraction

In many problems it is necessary to define segments of surfaces from the NURBS
patches. These may be found using the solution command N EXtract. This should be
performed in an interactive mode of solutions. To initiate the extraction it is necessary
to first display a plot of the problem in graphics mode. For two dimensional problems
one should first give the command

PLOT MESH

this is then followed with the command
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N_EXtract

The program will then display each of the boundary segments for each NURBS patch
and the user may select to output a file or reject it.

In a three dimensional problem the graphics commands

PLOT PERSpecitive

PLOT HIDE

PLOT MESH

should be issued prior to giving the

N_EXtract

command.

After completing the selection of any boundary segments a set of files containing the
ELEMents and ENURbs data will be created. A single file

Bxxx_m

where xxx are the characters (3:5) of the input file name, contains a record

*auto

and a list of the files containing the surface segment extractions. These should be
reviewed to ensure the created mesh data is correct. In particular the material set
number for each segment. The basic header to change is

ELEMent NODE=no_nd MATE=ma TYPE ....

The material number for the entire set can be changed by setting the value of ma

desired. It is not necessary to change the number on each element data record. Do not
edit any data in the date part ENURbs. This is used to select the correct extraction
operator for each element.

The file Bxxx m should be added to the mesh part of the input file that created the
boundary segments as

include Bxxx_m
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2.9 Problem solution

After the problem is formed, standard FEAP solution commands are used to solve
each problem.

2.10 Graphics outputs

Standard FEAP plot commands may be used to display the location of the control
points (PLOT NODE command) and boundary restraints on the control points (PLOT
BOUNdary). Use of any contouring commands (PLOT CONT, PLOT STRE) is performed
by projection onto 4-node quadrilateral sub-elements of the surface. Most plot com-
mands may be used but there remain some delicate transformations between the vari-
ous representation of the data to be plotted. For 3-d objects plots should be given in
perspective mode. Thus, the data for each plot sequence should begin with

PLOT PERSpective ! Required for 3-d only

PLOT HIDE ! Required for 3-d only

If a problem requires long solution times it is advisable to use SAVE commands to
preserve solution values prior to attempting plot outputs.

2.11 Solutions using T-splines

FEAP permits the calculation of isogeometric objects represented by T-splines. The
solution is obtained using an extraction operator form in which the element shape
functions are expressed in terms of shape functions given as

Ne = Ce Re

where Re are a Bezier representation of NURBS, Ce is the element extraction operator
and Ne are the T-spline shape functions.

The data input is provided by an output from the refinement program developed at
The University of Texas by Mike Scott

27
and included as an extension of the T-Splines

28

plug-in to Rhino
29

.

Only surface data is provided and thus analyses are restricted to bodies that are rep-
resented by surfaces (e.g., 2-d solid bodies, membranes and shells). A typical input file
is given as:
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FEAP * * Title information

ndm = <2,3> ! 2-d solids or 3-d surfaces, respectively

ndf = <1,2,...> ! Describes number of dof at a control point

MATErial

<SOLId, MEMBrane, SHELl>

elastic isotropic E nu

NURBs,TSPLine,q1,q2,q3

T-SPline

PLOT INTErval <1 to 7> ! Number of subdivision of surface

FILE = "filename of data"

.... ! Loads, B.C., etc.

END ! End of data inputs

INTEractive ! Interactive solution commands

STOP ! End of data file

Standard solution commands may be used. Graphics is available in a manner similar
to that for NURBS problems.
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Example mesh and elements

To illustrate the relationship between control points and their association with indi-
vidual elements defined by knot spacing we show a few two-dimensional examples.

Example: 2-d NURBS patch of quadratic elements

The mesh and elements for a 3× 3 patch of quadratic elements is shown in
Fig. 3.1. The individual elements of the mesh and their associated control
points are shown in Fig. 3.2.
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(a) Mesh with control points (b) Elements in color

Figure 3.1: Two dimensional NURBS patch of quadratic elements.
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Figure 3.2: Individual elements for 2-d NURBS patch of quadratic elements.

Example: 2-d NURBS patch of cubic elements

The mesh and elements for a 3 × 3 patch of cubic elements is shown in
Fig. 3.3. The individual elements of the mesh and their associated control
points are shown in Fig. 3.4.

Example: 2-d NURBS patch of quartic elements

The mesh and elements for a 3 × 3 patch of quartic elements is shown
in Fig. 3.5. The individual element description is not shown, however,
each element involves a 5× 5 patch of control point which overlap between
elements except for one control point. Thus, the mesh only grows by one
control point in each direction as the order is increased.
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Figure 3.3: Two dimensional NURBS patch of cubic elements.
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Figure 3.4: Individual elements for 2-d NURBS patch of cubic elements.
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Figure 3.5: Two dimensional NURBS patch of quartic elements.
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Appendix A

BLOCk input form

A.1 NSIDE list of control points

The side nodes for a patch of NURBS is a list of control point numbers. The data is
given by

NSIDes
side s1 lside1 k1 (cp1(i),i=1,lside1)
side s2 lside2 k2 (cp2(i),i=1,lside2)

.....
! terminate with blank record

where s1 is the side number, lside1 is the number of control point numbers in the
side vector, k1 is the number of the knot vector associated with the side; and cp1(i)

is the list of lside1 control point numbers defining the side. The number of control
points and the number of associated knot values is related by

lknot(k1) = lside(s1) + order(k1) + 1

Thus, a linear side (order = 1) with two (2) control points has a knot vector with four
(4) values. The open knot vector has repeated first and last values and thus is the form

0.0 0.0 1.0 1.0

or similar.
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A.2 NBLOCK specification

A.2.1 One dimensional block

For a one dimensional block the command is given as

NBLOck

block 1 ma side

where ma is the block material set number and side the side number giving the list of
control points.

A.2.2 Two dimensional block

A two dimensional block is described by two knot vectors. The first knot vector de-
scribes the two sides of the block and also any intermediate list of sides in the interior of
the block directed in the same direction. The second knot vector describes the second
direction in the block. The associated control points for the second knot vector must
be the first control point from all the sides comprising the first direction and given in
the order corresponding to increasing knot values in the second direction. The input
data for the block is given as

NBLOck
block 2 ma side2

where ma the material set number and side2 the side number for the second block
direction. For example, the block shown in Fig. A.1 can let block direction 1 be

1 2 3

4 5 6

Figure A.1: Two dimensional NURBS block data
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associated with side with control points 1 and 4 and block direction 2 with control
points 1, 2, and 3.

Example: 2-d NURB BLOCK

The data for the two dimensional tensor product block shown in Figure A.1
is specified as follows:

NURBs
1 0 0.0 0.0 1.0
2 0 40.0 0.0 1.0
3 0 100.0 0.0 1.0
4 0 0.0 140.0 1.0
5 0 40.0 140.0 1.0
6 0 100.0 140.0 1.0

KNOTs
open 1 4 0.0 0.0 1.0 1.0
open 2 5 0.0 0.0 0.5 1.0 1.0

NSIDEs
side 1 2 1 1 4
side 2 2 1 2 5
side 3 2 1 3 6
side 4 3 2 1 2 3

NBLOCK
block 2 1 4

Note that the specification of the dotted line at the knot value 0.5 is not
necessary to give an exact geometry for this simple rectangle. However, it
permits for a non-uniform subdivision in the horizontal direction later.

A.2.3 Three dimensional block

The specification of a three dimensional NURBS block is given by defining the list

of all the sides lists for one of the block directions. In Fig. A.2 the sides in the 3

knot-direction are used to define a rectangular block. The NURBS block command for

a three dimensional block is given as

NBLOCK
block 3 ma k1 k2
(side(i),i = 1,list3d)

where ma is the material set number; k1, k2 are the knot numbers defining the gener-
ator plane of the block; and side(i) is the list of sides perpendicular to the generator
plane.
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Example: Three dimensional rectangular block

The data for the rectangular block shown in Fig. A.2 is given by the control
point locations for nodes 1 to 12 and the following knot vectors; side lists;
and block command:

KNOTS
open 1 6 0.0 0.0 0.0 1.0 1.0 1.0
open 2 4 0.0 0.0 1.0 1.0
open 3 4 0.0 0.0 1.0 1.0

NSIDES
side 1 2 3 1 2
side 2 2 3 3 4
side 3 2 3 5 6
side 4 2 3 7 8
side 5 2 3 9 10
side 6 2 3 11 12

NBLOCK
block 3 1 1 2

1 2 3 4 5 6

The direction 1 of the block is a quadratic NURBS while directions 2 and
3 are linear NURBS. Since the 1-direction is quadratic, the first 3 side lists
will be used to define this direction while the second set of three will create
the linear behavior for the 2-direction.

2

1

3

1

2

3

4

5

6

7

8

9

10

11

12

Figure A.2: Three dimensional NURBS block data



Appendix B

Patch storage arrays

The definition of NURBS patches utilizes several arrays to facilitate the description
of shape, element definition and knot intervals. The basic description is given in the
following tables.

NAME line surf soli Description
NBLK(1,ib) 1 2 3 Dimension of patch
NBLK(2,ib) ma ma ma Material number
NBLK(3,ib) nreg nreg nreg Region number
NBLK(4,ib) pn1 pn2 pn1*pn2 Length of patch
NBLK(5,ib) ipart ipart ipart Part number
NBLK(6,ib) is pn2+1 k1 Knot 1
NBLK(7,ib) 0 0 k2 Knot 2
NBLK(8,ib) - eside(1) k3 Edge 1/Knot 3
NBLK(9,ib) - eside(2) p1 Edge 2/Length 1
NBLK(10,ib) - eside(3) p2 Edge 3/Length 2
NBLK(11,ib) - eside(4) p3 Edge 4/Length 3

Table B.1: NURBS patch array NBLK parameters for block ib.
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NAME line surf soli Description
NBLKSD(1,ib) is is is Side 1 number
to
NBLKSD(L,ib) - l=pn2 l=pn1*pn2 Side L number from NBLK

Table B.2: NURBS patch array NBLKSD parameters for block ib.

NAME Description
LSIDE(1,is) Number of control points.
LSIDE(2,is) Knot number

Table B.3: NURBS patch array LSIDE parameters for side is.

NAME Description
NSIDES(1,is) Control point 1.
NSIDES(2,is) Control point 2.
etc.
NSIDES(dsideig,is) Last control point.

Table B.4: NURBS patch array NSIDES parameters for side is.

NAME Description
LKNOT(0,kn) Knot type: Open = 1;
LKNOT(1,kn) Number of knots.
LKNOT(2,kn) Order of knots.
LKNOT(3,kn) Number control points.
LKNOT(4,kn) Used to elevate order.

Table B.5: NURBS knot array LKNOT for knot kn.
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