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1 Author and version

I am Simone Pernice the writer of the SIMP package. If you �nd any bug or
you want to add features, you can contact me at pernice@libero.it. You can
�nd further details on my web site: simonepernice.freehostia.com

List of versions of this document:

• Version 1.0, Turin 14th December 2008, initial draft

• Version 1.1, Palermo 2nd January 2009, few �xes to the documentation
and added the new function intFormInt

2 Preface

I am an electrical engineer, I worked both on hardware and software �elds.
Designing an electrical circuit is quite complex because the characteristics of
the components involved have huge tolerance some about 5%, while others 50%.
The target is to have the circuit working in the worst case of the components and
of the environment! That involves to compute several times the same equation
putting inside the worst or best case values. Some time ago I was designing a
simple circuit when I though: �What if I use intervals instead of numbers? I
may get the best and worst case in just one step!�. Then I looked on the Internet
for Interval Mathematics: I discovered it was invented in the '50s [1]. Although
its not very spread it is a powerful tool: a calculator with �nite precision can
be used to compute calculus requiring in�nite precision because the solution is
a range where the actual value lay.

Therefore I looked for an open source calculator able to manage intervals in-
stead of real numbers. Unfortunately I was not able to �nd anything. There are
just few libraries for the C++ language and packages for proprietary software.
I was thinking to develop a calculator on my own, but it would have required
a lot of e�ort and long time. Then I discovered Octave[3]. By the way Octave
is a great tool that can be used by every engineer for its daily work. After a
look at Octave's tutorial [4] I decided to write a package to work on intervals
in Octave. It was the right choice, because it took just three days to make it
while building a new program from scratch would have taken weeks. The pack-
age extends the basic arithmetic functions to single interval mathematics, it is
called SIMP. As far as I know it is not possible to overload Octave operators
with m script �les, therefore I made new functions working on matrix to extend
the basic operations to intervals. In Octave it is possible to write the �rst few
chars of a function and then push the TAB key to get the list of the functions
compatible. Moreover it is really simple to build intermediate variables. That
makes not too long using the SIMP functions for standard calculations.

Section 3 shows why numbers are not the best tool when computing real
world entities. Section 4 explains what is an interval and how a function can be
extended to work on intervals. Section 5 explains some issues to be aware when
making interval calculations, which are not present in the number computation.
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Section 6 shows some examples to explain how the SIMP package can be used.
Eventually the Section 7 provides the detailed list of functions available.

3 Introduction

SIMP is a simple interval calculator. Intervals can be used instead of �oating
point number to automatically take into account the tolerance of the values used
in calculation. All functions can be extended to interval: therefore it is possible
to apply all the functions to intervals to get the �nal result as an interval. If you
understand what intervals are, you can go directly to Section 6 to read some
examples and then to Section 7 to see all the functions available.

Every day we need to compute the result of a lot of simple mathematical
equations. For example the cost of the apples bought at the supermarket is
given by the apple cost per kilo times the number of kilos bought: applePrice =
appleCostPerKilo × kilosOfAppleBought.

When we need the result of those mathematical expressions, we put the
values on the right side of the equation and we got its result on the left side.
Well, we usually put wrong numbers on the right side and therefore there is
no doubt we get wrong results. There are a lot of reasons why we put wrong
values, below some of them follows:

1. Most of the values are measured, therefore they are known within a given
tolerance (looking for accuracy and precision on Wikipedia will provide
interesting information on that matter);

2. Some values have an in�nite number of digits after the decimal point (real
number), like for π (the ratio between a circumference and its diameter);

3. Some values change with time or samples (or whatever), like the weight
of a person (which can change of 5% during a day) or the current gain of
a BJT (which can change of 50% on the samples of the same series);

4. Some value are estimation or guess: something like between a minimum
and a maximum.

For example if a pipe brakes and you want to buy a new one you need its
diameter. If you do not have a caliber, you may measure its circumference and
divide it by π (3.1415...):diameter = circumference

π .
Here there are two errors: the circumference is known within the tolerance

given by your meter, moreover π has an in�nite number of digits while only few
of them can be used in the operation. You may think the error is negligible, the
result is enough accurate to buy a new pipe in a hardware shop. However the
not in�nite accuracy of those operation avoid the use of computers as automatic
theorem demonstration tools and so on... This kind of issue is quite common
on engineer design. What engineers do is to be sure their design will work in
the worst case or in most of the cases (usually more than 99.9%).
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Here a simple example follows. Let us say you want to repaint the walls of
your living room completely messed up by your children. You need to compute
how many paint cans you need to buy. The equation is quite simple:

paintCans =
2 × (roomWidth + roomLength) × roomHeight

paintLitersPerCan × paintEfficiency
(1)

where paintE�ciency is how many square meters of surface can be painted
with a liter of paint. The problem here is that usually we do not have a long
enough meter to measure the room width and length, it is much simpler to count
the number of steps to go through it (1 step is about 1m, let us say from 0.9
to 1.1m). Moreover the paint provider usually declare a paint e�ciency range.
Let us put below the data:

• roomWidth = 6 (from 5.4m to 6.6m)

• steps roomLength = 4 (from 3.6m to 4.4m)

• steps roomHeight = 3 (it is assumed correct because its tolerance is much
smaller than the other pieces)

• meters paintE�ciency = from 0.7 to 1.3 square meters per liter (1 liter
per square meter in average)

• paintLitersPerCan = 40 (it is assumed correct because its tolerance is
much smaller than the other pieces)

To compute the average result just put average values in (1). We get: paintCans =
2×(6+4)×3

40×1 = 1.5
paint cans, which means two unless you are able to buy just half of a can.
Are you satis�ed with that result? I am not. What if I have underestimated

something? As every engineer I would check what happens in the worst case,
which means 1.1m step and e�ciency of just 0.8. Again just substituting those

values in (1), we get: paintCans = 2×(6.6+4.4)×3
40×0.7 = 2.36. That is really interest-

ing: in the worst case I would miss 0.36 cans, it makes sense to buy three cans
to avoid to go back to the hardware shop to buy one more (in the worst case).

More happy with the result now? I am not completely satis�ed, I am asking
myself: what if in the best case I need just 1 can? In that case probably I need
more accurate data because the result range would be too wide. Eventually

from (1) we get: paintCans = 2×(5.4+3.6)×3
40×1.3 = 1.04. Which means two cans.

I am satis�ed, I have to buy at least two cans, but probably I may need one
more. In the next paragraph you will see how to do all this stu� in one step
using Octave and SIMP!

4 Intervals

As you saw in the example above a lot of computations are required to get an
idea of the range where the result of the equation lay. To get the worst case,
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you need to think carefully at the equation because some time you need to put
the higher value (like for steps in (1)) while other times the smallest (like for
e�ciency in (1)) to get the worst case and vice versa for the best. There is
a much simpler way to work with that issue. You can use intervals instead of
number[1, 2]. An interval is:

[a1, a2] = {∀x ∈ R | a1 6 x 6 a2} ; a1, a2 ∈ R ∪ {−∞, +∞} ; a1 6 a2 ; (2)

In few words, [a, b] is the set of real numbers among a and b. Please note
that intervals suit perfectly in all the cases where numbers do not �t (some were
showed in the Section 3).

Moreover when it is correct to use a number, it is possible to use a degenerate
interval like [a, a]. That means intervals can replace real numbers in every
computation.

It is possible also to de�ne functions that work on intervals instead of num-
bers:

f ([a1, a2], [b1, b2], ...) = {∀f(a, b, ...) ∈ R | ∃a ∈ [a1, a2], b ∈ [b1, b2], ...} (3)

Please note, with that de�nition it is possible to extend every function (like
addition, multiplication, square, square root, ...) to work on intervals.

Note also sometime a function may generate several intervals as result. As
an example consider the following division: [4, 4]/[−2, 2] = [−∞,−2] ∪ [2,+∞],
it generates two interval as result. However SIMP works only on single interval
function, for that reason if you try to divide for a interval containing 0 in SIMP,
you will get an error.

Eventually note that usually computing the interval result of a function
applied to intervals requires a lot of steps. Therefore sometime we may be
satis�ed to �nd, in a short time, a bigger interval containing the smallest interval
where the solution must lay.

In the example above you would have:

• roomWidth = [5.4, 6.6] meters

• roomLength = [3.6, 4.4] meters

• roomHeight = 3 = [3, 3] meters

• paintE�ciency = [0.7, 1.3] square meters per liter

• paintLitersPerCan = 40 = [40, 40] liters per can

Now you have just to compute the equation once with extended function to get
[1.04, 2.36] cans. SIMP, the Octave package I developed, extends all the basic
mathematical functions and it provides functions to extend all other available
Octave functions.
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5 Issues with interval computation

There are few issues you need to know about interval computations because
they do not happen in standard mathematics[2].

5.1 Variables independence

All the variables you use to make a computation are independent from each
other, although they are the same instance of variable for you. For example the
perimeter of a rectangle (which was also used in a piece of the equation 1) can
be written in several ways. If the dimensions of the rectangle are b and h we
can write:

perimeter = 2(h + b) (4)

perimeter = h + h + b + b (5)

In standard mathematics they are the same, while in interval mathematics we
have the interval equation(4) j equation(5). The reason is that every interval
that appears in the equation is not dependent from each other, therefore in
equation 5 is like having four di�erent dimensions (h, h', b and b').

What is important to remember is that: Every variable should appear just
once in the equation (if possible) in order to get the smallest interval possible as
result.

5.2 Hyper-cube Overlapping

The result of a set of simultaneous equations involving intervals is always an
hyper-cube. For example if we have two simultaneous equations in the unknowns
x and y the result will be a couple of intervals which draw a rectangle on the
Cartesian plane. However the solution of a couple of simultaneous equations
may be smaller, for example a segment on the Cartesian plane. In that case the
rectangle will contain the segment. There is no way to solve that, just remember
the solution is usually a super set of the actual one.

6 Introduction on how the package works

6.1 How to run SIMP in Octave

Octave [3] is a powerful numeric calculator, which is what is required for design.
It is open source and freely available on a lot of platform. I suggest to play with
Octave to understand its basic functions[4, 5] before using SIMP package.
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6.1.1 Install SIMP

First of all you have to install the SIMP package in Octave. To do that just run
Octave from the directory where was downloaded the package and execute the
following command:

• pkg install simp.tar.gz

From the next execution of Octave, it will automatically load the new functions.
Therefore SIMP functions will be available as the standard Octave ones.

6.1.2 Remove SIMP

If for some reason you want to remove the SIMP package, you can write:

• pkg uninstall simp.tar.gz

From the next execution of Octave all the SIMP functions will not be available.

6.2 Some example

SIMP works on matrix, interpreted as intervals. The basic interval is: [min,
max], which in Octave is a row vector made by two elements. The added
functions work on those matrixes. For example to add the intervals [5.4, 6.6]
and [3.6, 4.4] it is possible to write:

• addInt ([5.4, 6.6], [3.6, 4.4])

> ans = [9, 11]

addInt stands for add intervals. All SIMP functions end with the word �Int�. It
is possible to use scalar number instead of intervals. Every scalar is computed
like: s = [s, s]. Therefore the following computations give the same result:

• addInt ([5.4, 6.6], 3.6)

> ans = [9, 10.2]

• addInt ([5.4, 6.6], [3.6, 3.6])

> ans = [9, 10.2]

Octave supports variable declaration, therefore it is possible to write:

• roomWidth = [5.4, 6.6];

• roomLength =[3.6, 4.4];

• addInt (roomWidth, roomLength)
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> ans = [9, 11]

Now we know enough Octave syntax to compute the equation 1:

• roomHeight = 3;

• paintE�ciency = [0.7, 1.3];

• paintLitersPerCan = 40;

• divInt(mulInt(2, addInt (roomWidth, roomLength), roomHeight), mulInt(paintLitersPerCan,
paintE�ciency))

> ans = [1.0385, 2.3571]

Sometime the intervals are expressed in terms of tolerance. The electronic resis-
tors are sold in several tolerance classes: 1%, 2%, 5%. There is a SIMP function
to easily make an interval from a tolerance. For example a resistor of 10KOhms
with 5% of tolerance can be converted in an interval:

• tollToInt (10000, 5)

> ans = [9500, 10500]

If the tolerance is not symmetric, for example +5% and -10%:

• tollToInt (10000, 5, -10)

> ans = [9000, 10500]

It is also possible to convert values from engineer notation to interval:

• intFormInt([�10K+-5%�)

> ans = [9500, 10500]

• intFormInt([�10K+5%-10%�)

> ans = [9000, 10500]

All the computations are done among intervals in SIMP. Therefore there is a
SIMP function to convert an interval in engineer notation (in the hypothesis
that the tolerance is symmetrical):

• engFormInt([9500, 10500])

> ans = �10K+-5%�

Eventually those functions work on vectors of intervals which may be useful to
compute functions. It is possible to compute operation on vectors of the same
size (element by element) or scalar by vector. In that case the scalar is expanded
to a vector of the same size of the others. That is really useful for the functions
where a x vector can be used to compute a y in just one time.

10



• vect1 = [1 2;3 4;5 6]

> vect1 =

> 1 2

> 3 4

> 5 6

• addInt (vect1, vect1, 1)

> vect1 =

> 3 5

> 7 9

> 11 13

As you can see SIMP can be used just like a calculator. The basic operations
are applied on intervals instead of scalar. That makes really simple to evaluate
equations where some data is uncertain.

7 Functions

This section describes the functions provided in the SIMP package.

7.1 Intervals

All the SIMP functions work on vector of intervals as input.
A vector of intervals is a matrix with two columns and many rows: every

row describes an interval. The matrix is composed by real numbers.
An interval is a degenerate vector with two columns and only one row. The

�rst value is the interval minimum, the second is the interval maximum. There-
fore [1.1, 2.1] is an interval with 1.1 as lower boundary and 2.1 as upper bound-
ary.

A real number is meant as a case of degenerate interval with maximum and
minimum values coincident. Therefore 5 is like [5, 5].

It is useful working on vector because the same operation can be applied
to several intervals in one step. All the vectors involved must have the same
number of rows (intervals), with the exception of scalar and single interval. They
are automatically expanded to the number of rows (intervals) that matches the
other inputs.

7.2 valtol100ToInt (v1, ptol, ntol)

valtol100ToInt produces an interval with center value given by the scalar v1,
and positive and negative tolerance express in percentage given by ptol and
ntol. ntol is optional, if ntol is not present it is assumed equal to -ptol.
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7.3 intToTol (v1)

intToTol produces the tolerance of the vector of interval v1, in the hypothesis
that the actual value is in the average point between minimum and maximum.

7.4 intToTol100 (v1)

intToTol100 produces the tolerance (expressed in percentage) of the vector of
interval v1, in the hypothesis that the actual value is in the average point
between minimum and maximum.

7.5 intToVal (v1)

intToVal produces the central value of the vector of intervals v1, in the hypoth-
esis that the actual value is in the average point.

7.6 engFormInt (v1)

engFormInt returns a vector of strings representing the intervals in the vector
v1 in engineer notation. As value it returns the average between minimum and
maximum which means symmetric tolerance.

The engineer notation is obtained �nding the exponent (multiple of three)
so that the mantissa is between 1 and 1000, then the exponent is converted into
a letter as per the following list:

• Y = 1024

• Z = 1021

• E = 1018

• P = 1015

• T = 1012

• G = 109

• M = 106

• K = 103

• nothing = 100

• m = 10−3

• u = 10−6

• n = 10−9

• p = 10−12
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• f = 10−15

• a = 10−18

• z = 10−21

• y = 10−24

Eventually the tolerance is added in form of percentage: �+-� tolerance in per-
centage �%�. Please note that the tolerance is symmetric which is not always
the actual case. For example engFormInt([9500, 10500]) = �10K+-10%�.

Note that with other functions (7.2) it is possible to de�ne intervals with
not symmetric tolerance, they will not be converted properly back by 7.6.

7.7 intFormInt (string)

intFormInt returns a vector of intervals given a vector of strings (or a single
string) representing the number in engineer notation. See 7.6 for details on
engineer notation. For example intFormInt(�10K+-10%�) = [9500, 10500].

Although it is not orthogonal to 7.6, it evaluates also expression with not
symmetric tolerance: 10K+5%-10% is converted to [9000, 10500]. That was
done because not symmetric tolerance is quite common in practice.

7.8 addInt (v1, v2, v3, ...)

addInt adds the given vector of intervals. It returns v1 + v2 + v3 + . . . . They
must have the same number of rows or be single interval or be scalars. At least
two vectors are required.

7.9 negateInt (v1)

negateInt negates the given vector of intervals. It returns −v1.

7.10 subInt (v1, v2, v3, ...)

subInt subtracts the given vector of intervals. It returns v1 − v2 − v3 − . . . .
They must have the same number of rows or be single interval or be scalar. At
least two vectors are required.

7.11 mulInt (v1, v2, v3, ...)

mulInt multiplies the given vector of intervals. It returns v1 · v2 · v3 · . . . . They
must have the same number of rows or be single interval or be scalar. At least
two vectors are required.

7.12 invertInt (v1)

invertInt inverts the given vector of intervals. It returns 1
v1 .
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7.13 invertAddInt (v1, v2, v3, ...)

invertAddInt adds the inverse of the given vector of intervals and then inverts
again the result. It returns 1

1
v1+ 1

v2+ 1
v3+··· . They must have the same number of

rows or be single interval or be scalar. At least two vectors are required.

7.14 divInt (v1, v2, v3, ...)

divInt divides the given vector of intervals. It returns
v1
v2
v3 . . . . They must have

the same number of rows or be single interval or be scalar. The vectors v2, v3,
... must not include 0. At least two vectors are required.

7.15 powerInt (v1, n)

powerInt rise the given vector of intervals to the power of n. It returns v1n.

7.16 sqrInt (v1)

sqrInt squares the given vector of intervals. It returns v12.

7.17 sqrtInt (v1)

sqrtInt square roots the given vector of intervals. It returns
√

v1.

7.18 sqrAddInt (v1, v2, v3, ...)

addSqrInt adds the square of the given vector of intervals and then it squares
root the result. It returns

√
v12 + v22 + v32 + . . .. They must have the same

number of rows or be single interval or be scalar. At least two vectors are
required.

7.19 dB10ToLinInt (v1)

db10ToLinInt rises 10 to the power of v1 tens. It returns 10
v1
10 .

7.20 linToDB10Int (v1)

linToDB10Int produces 10 times the logarithm of v1. It returns 10log10(v1).

7.21 dB20ToLinInt (v1)

db10ToLinInt rises 10 to the power of v1 twenties. It returns 10
v1
20 .

7.22 linToDB20Int (v1)

linToDB10Int produces 20 times the logarithm of v1. It returns 20log10(v1).
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7.23 linSpaceTol100Int (begin, end, numberOfIntervals,
tolerance)

linSpaceTol100Int produces a vector of numberOfIntervals intervals equally spaced
between begin and end, with the given tolerance.

7.24 logSpaceTol100Int (begin, end, numberOfIntervals,
tolerance)

linSpaceTol100Int produces a vector of numberOfIntervals intervals equally spaced
between 10begin and 10end, with the given tolerance.

7.25 monotonicFunctionInt (f, x)

monotonicFunctionInt produces the y vector of interval obtained applying the
monotonic function f to the vector of interval x. If f is not monotonic, y may
be wrong.

7.26 functionInt (f, x, nOfPoint)

functionInt try to produces the y vector of interval obtained applying the func-
tion f to the vector of interval x. The function is checked for monotonicity on
the given number of point. nOfPoint is optional, default is 10.

7.27 plotInt (x, y)

plotInt plots the interval of vector y respect to the interval of vector x. Those
curves, for every x interval center point, goes through ymin and ymax. x and y
must have the same rows.

7.28 errorBarInt (x, y)

For every x center point, plots the y tolerance.
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