33 static void reconstruct(
char* filename,
int N,
int M,
int iteration,
int weight)
39 solver_plan_complex my_iplan;
44 double epsilon=0.0000003;
50 my_N[0]=N; my_n[0]=ceil(N*alpha);
51 my_N[1]=N; my_n[1]=ceil(N*alpha);
59 nfft_precompute_lin_psi(&my_plan);
66 solver_init_advanced_complex(&my_iplan,(nfft_mv_plan_complex*)&my_plan, infft_flags );
71 fin=fopen(
"weights.dat",
"r");
72 for(j=0;j<my_plan.M_total;j++)
74 fscanf(fin,
"%le ",&my_iplan.w[j]);
86 double r=sqrt(j2*j2+k2*k2);
88 my_iplan.w_hat[j*N+k]=0.0;
90 my_iplan.w_hat[j*N+k]=1.0;
96 fin=fopen(filename,
"r");
99 for(j=0;j<my_plan.M_total;j++)
101 fscanf(fin,
"%le %le %le %le ",&my_plan.x[2*j+0],&my_plan.x[2*j+1],
103 my_iplan.y[j] = real + _Complex_I*imag;
110 nfft_precompute_psi(&my_plan);
114 nfft_precompute_full_psi(&my_plan);
117 for(k=0;k<my_plan.N_total;k++)
118 my_iplan.f_hat_iter[k]=0.0;
120 t0 = nfft_clock_gettime_seconds();
123 solver_before_loop_complex(&my_iplan);
124 for(l=0;l<iteration;l++)
127 if(my_iplan.dot_r_iter<epsilon)
129 fprintf(stderr,
"%e, %i of %i\n",sqrt(my_iplan.dot_r_iter),
131 solver_loop_one_step_complex(&my_iplan);
135 t1 = nfft_clock_gettime_seconds();
138 fout_real=fopen(
"output_real.dat",
"w");
139 fout_imag=fopen(
"output_imag.dat",
"w");
141 for(k=0;k<my_plan.N_total;k++) {
142 fprintf(fout_real,
"%le ", creal(my_iplan.f_hat_iter[k]));
143 fprintf(fout_imag,
"%le ", cimag(my_iplan.f_hat_iter[k]));
150 solver_finalize_complex(&my_iplan);
153 nfft_finalize(&my_plan);
156 int main(
int argc,
char **argv)
159 printf(
"usage: ./reconstruct_data_2d FILENAME N M ITER WEIGHTS\n");
163 reconstruct(argv[1],atoi(argv[2]),atoi(argv[3]),atoi(argv[4]),atoi(argv[5]));
static void reconstruct(char *filename, int N, int M, int iteration, int weight)
reconstruct makes an inverse 2d nfft
#define PRECOMPUTE_WEIGHT
Header file for the nfft3 library.