
Last update: August 18, 2009

MyLib-C

A Small Library of Basic Utilities in ANSI C

Pierre L’Ecuyer and Richard Simard 1

Département d’Informatique et de Recherche opérationnelle
Université de Montréal

This document describes a set of basic utilities, implemented in ANSI C, used in the
software developed in the author’s simulation laboratory. Most of these tools were originally
implemented in the Modula-2 language. Some of them have been reimplemented in C in
order to facilitate the code translation of other software from Modula-2 to C.

1Francis Picard and Jean-Sébastien Sénécal have also participated in the development of MyLib.

Contents

gdef . 2

util . 5

bitset . 7

chrono . 9

num . 11

num2 . 14

tables . 16

mystr . 19

addstr . 20

tcode . 22

1

gdef

Platform-dependent options are defined here. These options are used by other modules
to decide when platform-dependent functions must be commented out or not. Most of these
options are set to their true values by the program configure in the installation process. The
user may choose to set some of them manually. This module also contains a function that
prints the current host name.

Global macros

#define FALSE 0
#define TRUE 1

typedef int lebool;

Defines the boolean type lebool, whose only possible values are TRUE and FALSE.

#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif

#ifndef HAVE_UINT32_T
#if UINT_MAX >= 4294967295UL

typedef unsigned int uint32_t;
#else

typedef unsigned long uint32_t;
#endif
#endif

#ifndef HAVE_UINT8_T
typedef unsigned char uint8_t;

#endif

The 8-bit and 32-bit unsigned integers.

#define USE_LONGLONG

Define this macro if 64-bit integers are available and ensure that they are defined correctly in
the following typedef. Otherwise, undefine this macro.

#ifdef USE_LONGLONG
typedef long long longlong;
typedef unsigned long long ulonglong;

#define PRIdLEAST64 "lld"
#define PRIuLEAST64 "llu"
#endif

The 64-bit integer types. Note that the 64-bit integers types long long and unsigned long
long may exist and be called by different names. The macros PRIdLEAST64 and PRIuLEAST64

2

are defined in the ISO C99 standard in order to print signed and unsigned 64-bit integers,
respectively. Define them correctly if they are not already defined, otherwise comment them
out.

#undef USE_ANSI_CLOCK

On a MS-Windows platform, the MS-Windows function GetProcessTimes will be used to mea-
sure the CPU time used by programs (in module chrono).

On Linux/Unix platforms, if the macro USE_ANSI_CLOCK is defined, the timers will call the
ANSI C clock function. However, on systems where the type clock_t is a 32-bit long, the
time returned will wrap around to negative values after about 36 minutes. When the macro
USE_ANSI_CLOCK is undefined, the module chrono gets the CPU time used by a program via an
alternate non-ANSI C timer based on the POSIX (The Portable Operating System Interface)
function times, assuming this function is available. The POSIX standard is described in the
IEEE Std 1003.1-2001 document (see The Open Group web site at http://www.opengroup.
org/onlinepubs/007904975/toc.htm).

#define DIR_SEPARATOR "/"

Used to separate directories in the pathname of a file. It is "/" on Unix-Linux and most other
platforms. It may have to be set to "\\" on some platforms.

#undef USE_GMP

Define this macro if the GNU multi-precision package GMP is available. GMP is a portable
library written in C for arbitrary precision arithmetic on integers, rational numbers, and floating-
point numbers. See the Free Software Foundation web site at http://www.gnu.org/software/
gmp/manual. A few random number generators in library TestU01 use arbitrary large integers,
and they have been implemented with GMP functions. If one wants to use GMP, the GMP
header file (gmp.h) must be in the search path of the C compiler for included files, and the GMP
library must be linked to create executable programs.

#undef HAVE_MATHEMATICA

Define this macro if the Mathematica software [4] and the MathLink program that allows a
C program to call functions from Mathematica are available and you want to use them. This
is used only in module usoft of library TestU01, where the random number generators from
Mathematica can be called from a C program for testing with TestU01.

When a C program uses Mathematica, it must be compiled with the options -I$MATHINC
-L$MATHLIB -lML, where $MATHINC is the path to the header file mathlink.h and $MATHLIB is
the path to the MathLink library libML.a. For example, in the environment of our lab, both
$MATHINC and $MATHLIB must be set to

<dir>/mathematica/5.0/linux/AddOns/MathLink/DeveloperKit/Linux/CompilerAdditions.

To run a main program named tulip on a Unix/Linux platform that calls Mathematica func-
tions, one may use

3

tulip -linkname ’math -mathlink’ -linklaunch.

Host machine

void gdef_GetHostName (char machine[], int n);

Returns in machine the host name. Will copy at most n characters, so the array machine[]
should have a size ≥ n. This is useful, for example, to get the name of the machine on which a
program is running.

void gdef_WriteHostName (void);

Prints the name of the machine on which a program is running. This should work on any Unix
or Linux machine.

4

util

Safe functions to open and close files, to allocate dynamic memory, to read/write
booleans, and to print error messages. Some of the “functions” are actually implemented as
macros, in the interest of speed.

#include "gdef.h"
#include <stdio.h>
#include <stdlib.h>

Macros

util_Error (S);

Prints the string S, then stops the program.

util_Assert (Assertion, S);

If lebool Assertion is FALSE (= 0), then prints the string S and stops the program.

util_Warning (Condition, S);

If lebool Condition is TRUE (6= 0), then prints the string S.

util_Max (x, y);

Returns the largest of the two numbers x, y.

util_Min (x, y);

Returns the smallest of the two numbers x, y.

Prototypes

FILE * util_Fopen (const char *name, const char *mode);

Calls fopen (from stdio.h) with same arguments, but checks for errors. Opens or creates file
with name name in mode mode. Returns a pointer to FILE that is associated with the stream.
If name cannot be accessed, the program stops.

int util_Fclose (FILE *stream);

Calls fclose (from stdio.h) with same arguments, but checks for errors. Closes the file asso-
ciated with stream. If the file is successfully closed, 0 is returned. If an error occurs or the file
was already closed, EOF is returned.

5

int util_GetLine (FILE *file, char *Line, char c);

Reads a line of data from file. Blank lines and comments are ignored. A comment is any line
whose first non-whitespace character is c. If the character c appears anywhere on a line that
is not a comment, then c and the rest of the line are ignored too. The function returns −1 if
end-of-file or an error is encountered, otherwise it returns 0.

void util_ReadBool (char S[], lebool *x);

Reads a lebool value from string S and returns it in x. The possible values are TRUE and FALSE.

void util_WriteBool (lebool x, int d);

Writes the value of x in a field of width d. If d < 0, x is left-justified, otherwise right-justified.

void * util_Malloc (size_t size);

Calls malloc (from stdlib.h) with same arguments, but checks for errors. Allocates memory
large enough to hold an object of size size. A successful call returns the base address of the
allocated space, otherwise the programs stops. The standard type size_t is defined in stdio.h.

void * util_Calloc (size_t dim, size_t size);

Calls calloc (from stdlib.h) with same arguments, but checks for errors. Allocates memory
large enough to hold an array of dim objects each of size size. A successful call returns the
base address of the allocated space, otherwise the programs stops. The standard type size_t
is defined in stdio.h.

void * util_Realloc (void *ptr, size_t size);

Calls realloc (from stdlib.h) with same arguments, but checks for errors. Takes a pointer
to a memory region previously allocated and referenced by ptr, then changes its size to size
while preserving its content. A successful call returns the base address of the resized (or new)
space, otherwise the programs stops. The standard type size_t is defined in stdio.h.

void * util_Free (void *p);

Calls free (p) (from stdlib.h) to free memory allocated by util_Malloc, util_Calloc or
util_Realloc. Always returns the NULL pointer.

6

bitset

This module defines sets of bits and useful operations for such sets. Some of these
operations are implemented as macros.

Constants

extern unsigned long bitset_maskUL[];

bitset_maskUL[j] has bit j set to 1 and all other bits set to 0. Bit 0 is the least significant
bit.

extern unsigned long bitset_MASK[];

bitset_MASK[j] has all the first j bits set to 1 and all other bits set to 0. Bit 0 is the least
significant bit.

Types

typedef unsigned long bitset_BitSet;

Set of bits. Bits are numbered starting from 0 for the least significant bit. If bit s is 1, then
element s is a member of the set, otherwise not.

Macros

bitset_SetBit (S, b);

Sets bit b in set S to 1.

bitset_ClearBit (S, b);

Sets bit b in set S to 0.

bitset_FlipBit (S, b);

Flips bit b in set S; thus, 0 → 1 and 1 → 0.

bitset_TestBit (S, b);

Returns the value of bit b in set S.

7

bitset_RotateLeft (S, t, r);

Rotates the t bits of set S by r bits to the left. S is considered as a t-bit number kept in the
least significant bits of the equivalent number S.

bitset_RotateRight (S, t, r);

Rotates the t bits of set S by r bits to the right. S is considered as a t-bit number kept in the
least significant bits of the equivalent number S.

Prototypes

bitset_BitSet bitset_Reverse (bitset_BitSet Z, int s);

Reverses the s least significant bits of Z considered as a number. Thus, if s = 4 and Z = 0011,
the returned value is 1100.

void bitset_WriteSet (char *desc, bitset_BitSet Z, int s);

Prints the string desc (which may be empty), then writes the s least significant bits of Z
considered as an unsigned binary number. This corresponds to the s first elements of Z.

8

chrono

This module acts as an interface to the system clock to compute the CPU time used
by parts of a program. Even though the ANSI/ISO macro CLOCKS_PER_SEC = 1000000 is
the number of clock ticks per second for the value returned by the clock function (so this
function returns the number of microseconds), on some systems where the 32-bit type long

is used to measure time, the value returned by clock wraps around to negative values after
about 36 minutes. On some other systems where time is measured using the 32-bit type
unsigned long, the clock may wrap around to 0 after about 72 minutes. When the macro
USE_ANSI_CLOCK in module gdef is undefined, a non-ANSI-C clock is used. On Linux-Unix
systems, it calls the POSIX function times to get the CPU time used by a program. On
a Windows platform (when the macro HAVE_WINDOWS_H is defined), the Windows function
GetProcessTimes will be used to measure the CPU time used by programs.

Every variable of type chrono_Chrono acts as an independent stopwatch. Several such
stopwatchs can run at any given time. An object of type chrono_Chrono must be declared
for each of them. The function chrono_Init resets the stopwatch to zero, chrono_Val

returns its current reading, and chrono_Write writes this reading to the current output.
The returned value includes part of the execution time of the functions from module chrono.
The chrono_TimeFormat allows one to choose the kind of time units that are used.

Below is an example of how the functions may be used. A stopwatch named mytimer is
declared and created. After 2.1 seconds of CPU time have been consumed, the stopwatch
is read and reset. Then, after an additional 330 seconds (or 5.5 minutes) of CPU time the
stopwatch is read again, printed to the output and deleted.

double t;

chrono_Chrono *mytimer = chrono_Create ();
... (suppose 2.1 CPU seconds are used here.)

t = chrono_Val (mytimer, chrono_sec); /* Here, t = 2.1 */

chrono_Init (mytimer);
... (suppose 330 CPU seconds are used here.)

t = chrono_Val (mytimer, chrono_min); /* Here, t = 5.5 */

chrono_Write (mytimer, chrono_hms); /* Prints: 00:05:30.00 */

chrono_Delete (mytimer);

9

Types

typedef struct {
unsigned long microsec;
unsigned long second;
} chrono_Chrono;

For every stopwatch needed, the user must declare a variable of this type and initialize it by
calling chrono_Create.

typedef enum {
chrono_sec,
chrono_min,
chrono_hours,
chrono_days,
chrono_hms
} chrono_TimeFormat;

Types of units in which the time on a chrono_Chrono can be read or printed: in seconds (sec)),
minutes (min), hours (hour), days (days), or in the HH:MM:SS.xx format, with hours, minutes,
seconds and hundreths of a second (hms).

Timing functions

chrono_Chrono * chrono_Create (void);

Creates and returns a stopwatch, after initializing it to zero. This function must be called for
each new chrono_Chrono used. One may reinitializes it later by calling chrono_Init.

void chrono_Delete (chrono_Chrono * C);

Deletes the stopwatch C.

void chrono_Init (chrono_Chrono * C);

Initializes the stopwatch C to zero.

double chrono_Val (chrono_Chrono * C, chrono_TimeFormat Unit);

Returns the time used by the program since the last call to chrono_Init(C). The parameter
Unit specifies the time unit. Restriction: Unit = chrono_hms is not allowed here; it will cause
an error.

void chrono_Write (chrono_Chrono * C, chrono_TimeFormat Unit);

Prints the CPU time used by the program since its last call to chrono_Init(C). The parameter
Unit specifies the time unit.

10

num

This module offers some useful constants and basic tools to manipulate numbers repre-
sented in different forms.

#include "gdef.h"

Constants

#define num_Pi 3.14159265358979323846

The number π.

#define num_ebase 2.7182818284590452354

The number e.

#define num_Rac2 1.41421356237309504880
√

2, the square root of 2.

#define num_1Rac2 0.70710678118654752440

1/
√

2.

#define num_Ln2 0.69314718055994530941

ln(2), the natural logarithm of 2.

#define num_1Ln2 1.44269504088896340737

1/ ln(2).

#define num_MaxIntDouble 9007199254740992.0

Largest integer n0 = 253 such that all integers n ≤ n0 are represented exactly as a double.

Precomputed powers

#define num_MaxTwoExp 64

Powers of 2 up to num_MaxTwoExp are stored exactly in the array num_TwoExp.

extern double num_TwoExp[];

Contains precomputed powers of 2. One has num_TwoExp[i] = 2i for 0 ≤ i ≤ num_MaxTwoExp.

#define num_MAXTENNEGPOW 16

Negative powers of 10 up to num_MAXTENNEGPOW are stored in the array num_TENNEGPOW.

11

extern double num_TENNEGPOW[];

Contains the precomputed negative powers of 10. One has TENNEGPOW[j]= 10−j , for j = 0, . . . ,
num_MAXTENNEGPOW.

Prototypes

#define num_Log2(x) (num_1Ln2 * log(x))

Gives the logarithm of x in base 2.

long num_RoundL (double x);

Rounds x to the nearest (long) integer and returns it.

double num_RoundD (double x);

Rounds x to the nearest (double) integer and returns it.

int num_IsNumber (char S[]);

Returns 1 if the string S begins with a number (with the possibility of spaces and a +/− sign
before the number). For example, “ + 2” and “4hello” return 1, while “− + 2” and “hello”
return 0.

void num_IntToStrBase (long k, long b, char S[]);

Returns in S the string representation of k in base b.

void num_Uint2Uchar (unsigned char output[], unsigned int input[], int L);

Transforms the L 32-bit integers contained in input into 4L characters and puts them into
output. The order is such that the 8 most significant bits of input[0] will be in output[0],
the 8 least significant bits of input[0] will be in output[3], and the 8 least significant bits of
input[L-1] will be in output[4L-1]. Array output must have at least 4L elements.

void num_WriteD (double x, int i, int j, int k);

Writes x to current output. Uses a total of at least i positions (including the sign and point
when they appear), j digits after the decimal point and at least k significant digits. The number
is rounded if necessary. If there is not enough space to print the number in decimal notation
with at least k significant digits (j or i is too small), it will be printed in scientific notation
with at least k significant digits. In that case, i is increased if necessary. Restriction: j and k
must be strictly smaller than i.

12

void num_WriteBits (unsigned long x, int k);

Writes x in base 2 in a field of at least max{b, |k|} positions, where b is the number of bits in
an unsigned long. If k > 0, the number will be right-justified, otherwise left-justified.

long num_MultModL (long a, long s, long c, long m);

Returns (as+ c) mod m. Uses the decomposition technique of [3] to avoid overflow. Supposes
that s < m.

double num_MultModD (double a, double s, double c, double m);

Returns (as+c) mod m, assuming that a, s, c, and m are all integers less than 235 (represented
exactly). Works under the assumption that all positive integers less than 253 are represented
exactly in floating-point (in double).

long num_InvEuclid (long m, long z);

This function computes the inverse z−1 mod m by the modified Euclid algorithm (see [2, p.
325]) and returns the result. If the inverse does not exist, returns 0.

unsigned long num_InvExpon (int E, unsigned long z);

This function computes the inverse z−1 mod 2E by exponentiation and returns the result. If
the inverse does not exist, returns 0. Restriction: E not larger than the number of bits in an
unsigned long.

13

num2

This module provides procedures to compute a few numerical quantities such as factori-
als, combinations, Stirling numbers, Bessel functions, gamma functions, and so on. These
functions are more esoteric than those provided by num.

#include "gdef.h"
#include <math.h>

Prototypes

double num2_Factorial (int n);

The factorial function. Returns the value of n!

double num2_LnFactorial (int n);

Returns the value of ln(n!), the natural logarithm of the factorial of n. Gives at least 16 decimal
digits of precision (relative error < 0.5× 10−15)

double num2_Combination (int n, int s);

Returns the value of
(n
s

)
, the number of different combinations of s objects amongst n.

#ifdef HAVE_LGAMMA
#define num2_LnGamma lgamma
#else

double num2_LnGamma (double x);
#endif

Calculates the natural logarithm of the gamma function Γ(x) at x. Our num2_LnGamma gives 16
decimal digits of precision, but is implemented only for x > 0. The function lgamma is from the
ISO C99 standard math library.

double num2_Digamma (double x);

Returns the value of the logarithmic derivative of the Gamma function ψ(x) = Γ′(x)/Γ(x).

#ifdef HAVE_LOG1P
#define num2_log1p log1p
#else

double num2_log1p (double x);
#endif

Returns a value equivalent to log(1 + x) accurate also for small x. The function log1p is from
the ISO C99 standard math library.

14

void num2_CalcMatStirling (double *** M, int m, int n);

Calculates the Stirling numbers of the second kind,

M [i, j] =

{
j
i

}
for 0 ≤ i ≤ m and 0 ≤ i ≤ j ≤ n. (1)

See D. E. Knuth, The Art of Computer Programming , vol. 1, second ed., 1973, Section 1.2.6.
The matrix M is the transpose of Knuth’s (1973). This procedure allocates memory for the
2-dimensionnal matrix M , and fills it with the values of Stirling numbers; the memory should
be freed later with the function num2_FreeMatStirling.

void num2_FreeMatStirling (double *** M, int m);

Frees the memory space used by the Stirling matrix created by calling num2_CalcMatStirling.
The parameter m must be the same as the m in num2_CalcMatStirling.

double num2_VolumeSphere (double p, int t);

Calculates the volume V of a sphere of radius 1 in t dimensions using the norm Lp, according
to the formula

V =
[2Γ(1 + 1/p)]t

Γ (1 + t/p)
, p > 0,

where Γ is the well-known gamma function. The case of the sup norm L∞ is obtained by
choosing p = 0. Restrictions: p ≥ 0 and t ≥ 1.

double num2_EvalCheby (const double A[], int N, double x);

Evaluates a series of Chebyshev polynomials Tj , at point x ∈ [−1, 1], using the method of
Clenshaw [1], i.e. calculates and returns

y =
A0

2
+

N∑
j=1

AjTj(x).

double num2_BesselK025 (double x);

Returns the value of K1/4(x), where Kν is the modified Bessel’s function of the second kind.
The relative error on the returned value is less than 0.5× 10−6 for x > 10−300.

15

tables

This module provides an implementation of variable-sized arrays (matrices), and proce-
dures to manipulate them. The advantage is that the size of the array needs not be known
at compile time; it can be specified only during the program execution. There are also pro-
cedures to sort arrays, to print arrays in different formats, and a few tools for hashing tables.
The functions tables_CreateMatrix... and tables_DeleteMatrix... manage memory
allocation for these dynamic matrices.

As an illustration, the following piece of code declares and creates a 100 × 500 table of
floating point numbers, assigns a value to one table entry, and eventually deletes the table:

double ** T;

T = tables_CreateMatrixD (100, 500);

T[3][7] = 1.234;

...

tables_DeleteMatrixD (&T);

#include "gdef.h"

Printing styles

typedef enum {
tables_Plain,
tables_Mathematica,
tables_Matlab
} tables_StyleType;

Printing styles for matrices.

Functions to create, delete, sort, and print tables

long ** tables_CreateMatrixL (int M, int N);
unsigned long ** tables_CreateMatrixUL (int M, int N);
double ** tables_CreateMatrixD (int M, int N);

Allocates contiguous memory for a dynamic matrix of M rows and N columns. Returns the base
address of the allocated space.

void tables_DeleteMatrixL (long *** T);
void tables_DeleteMatrixUL (unsigned long *** T);
void tables_DeleteMatrixD (double *** T);

Releases the memory used by the matrix T (see tables_CreateMatrix) passed by reference,
that is, using the & symbol. T is set to NULL.

16

void tables_CopyTabL (long T1[], long T2[], int n1, int n2);
void tables_CopyTabD (double T1[], double T2[], int n1, int n2);

Copies T1[n1..n2] in T2[n1..n2].

void tables_QuickSortL (long T[], int n1, int n2);
void tables_QuickSortD (double T[], int n1, int n2);

#ifdef USE_LONGLONG
void tables_QuickSortLL (longlong T[], int n1, int n2);
void tables_QuickSortULL (ulonglong T[], int n1, int n2);

#endif

Sort the tables T[n1..n2] in increasing order.

void tables_WriteTabL (long V[], int n1, int n2, int k, int p, char Desc[]);

#ifdef USE_LONGLONG
void tables_WriteTabLL (longlong V[], int n1, int n2, int k, int p,

char Desc[]);
void tables_WriteTabULL (ulonglong V[], int n1, int n2, int k, int p,

char Desc[]);
#endif

Write the elements n1 to n2 of table V, k per line, p positions per element. If k = 1, the index
will also be printed. Desc contains a description of the table.

void tables_WriteTabD (double V[], int n1, int n2, int k, int p1, int p2,
int p3, char Desc[]);

Writes the elements n1 to n2 of table V, k per line, with at least p1 positions per element, p2
digits after the decimal point, and at least p3 significant digits. If k = 1, the index will also be
printed. Desc contains a description of the table.

void tables_WriteMatrixD (double** Mat, int i1, int i2, int j1, int j2,
int w, int p, tables_StyleType style,
char Name[]);

Writes the submatrix with lines i1 ≤ i ≤ i2 and columns j1 ≤ j ≤ j2 of the matrix Mat with
format style. The elements are printed in w positions with a precision of p digits. Name is an
identifier for the submatrix.

For Matlab, the file containing the matrix must have the extension .m. For example, if it is
named poil.m, it will be accessed by the simple call poil in Matlab. For Mathematica, if the
file is named poil, it will be read using << poil;.

void tables_WriteMatrixL (long** Mat, int i1, int i2, int j1, int j2, int w,
tables_StyleType style, char Name[]);

Similar to tables_WriteMatrixD.

17

long tables_HashPrime (long n, double load);

Returns a prime number M to be used as the size (the number of elements) of a hashing table.
M will be such that the load factor n/M do not exceed load. If load is small, an important
part of the table will be unused; that will accelerate searches and insertions. This function uses
a small sequence of prime numbers; the real load factor may be significatively smaller than load
because only a limited number of prime numbers are in the table. In case of failure, returns −1.

18

mystr

This module offers some tools for the manipulation of character strings.

void mystr_Delete (char S[], unsigned int index, unsigned int len);

Deletes len characters from S, starting at position index.

void mystr_Insert (char Res[], char Source[], unsigned int Pos);

Inserts the string Source into Res, starting at position Pos.

void mystr_ItemS (char R[], char S[], const char T[], unsigned int N);

Returns in R the N-th substring of S (counting from 0). Substrings are delimited by any
character from the set T.

int mystr_Match (char Source[], char Pattern[]);

Returns 1 if the string Source matches the string Pattern, and 0 otherwise. The characters
“?” and “*” are recognized as wild characters in the string Pattern.

void mystr_Slice (char R[], char S[], unsigned int P, unsigned int L);

Returns in R the substring in S beginning at position P and of length L.

void mystr_Subst (char Source[], char OldPattern[], char NewPattern[]);

Searches for the string OldPattern in the string Source, and replaces its first occurence with
NewPattern.

void mystr_Position (char Substring[], char Source[], unsigned int at,
unsigned int * pos, int * found);

Searches for the string Substring in the string Source, starting at position at, and returns the
position of its first occurence in pos.

19

addstr

The functions described here are convenient tools for constructing character strings that
contain a series of numeric parameters, with their values. For example, suppose one wishes
to put “LCG with m = 101, a = 12, s = 1” in the string str, where the actual numbers
101, 12, and 1 must be taken as the values of long integer variables m, a, and s. This can
be achieved by the instructions:

strcpy (str, "LCG with ");
addstr_Long (str, " m = ", m);
addstr_Long (str, ", a = ", m);
addstr_Long (str, ", s = ", s);

Each function addstr_... (char *to, const char *add, ...) first appends the
string add to the string to, then appends to it a character string representation of the
number (or array of numbers) specified by its last parameter. In the case of an array of
numbers (e.g., addstr_ArrayLong), the parameter high specifies the size of the array, and
the elements [0..high-1] are added to str. The ...LONG versions are for 64-bit integers.
In all cases, the string to should be large enough to accomodate what is appended to it.

#include "gdef.h"

Prototypes

void addstr_Int (char *to, const char *add, int n);

void addstr_Uint (char *to, const char *add, unsigned int n);

void addstr_Long (char *to, const char *add, long n);

void addstr_Ulong (char *to, const char *add, unsigned long n);

void addstr_Double (char *to, const char *add, double x);

void addstr_Char (char *to, const char *add, char c);

void addstr_Bool (char *to, const char *add, int b);

#ifdef USE_LONGLONG
void addstr_LONG (char *to, const char *add, longlong n);

void addstr_ULONG (char *to, const char *add, ulonglong n);
#endif

20

void addstr_ArrayInt (char *to, const char *add, int high, int []);

void addstr_ArrayUint (char *to, const char *add, int high,
unsigned int []);

void addstr_ArrayLong (char *to, const char *add, int high, long []);

void addstr_ArrayUlong (char *to, const char *add, int high,
unsigned long []);

void addstr_ArrayDouble (char *to, const char *add, int high, double []);

21

tcode

Program tcode makes compilable code from a TEX or LATEX document. It creates a file
FOut for a compiler like cc (or any other), starting from a file FIn. The names of these two
files must be given by the user, with appropriate extension, when calling the program. The
two file names (with the extension) must be different.

Only the text included between the \code and \endcode delimiters will appear in the
second file. Only the following LATEX commands can appear between \code and \endcode:

\hide, \endhide, \iffalse, \fi, \smallcode, \smallc.

Everything else between \code and \endcode must be legal code in the output file, apart
from two exceptions: the TEX command \def\code, defining \code will not start a region
of valid code, nor will \code appearing on a line after a TEX comment character %.

If one wants code to appear in the compilable file, but be invisible in the dvi file obtained
from processing the tex file with LATEX, one should put this code between the delimiters
\hide and \endhide, or between the delimiters \iffalse and \fi.

The program is called by:

tcode 〈FIn〉 〈FOut〉

Examples: If one wants to extract the C code from the LATEX file chrono.tex, and place
it in the header file chrono.h, the following command should be used:

tcode chrono.tex chrono.h

To extract Java code from the LATEX file Event.tex, and place it in the file Event.java,
one must use:

tcode Event.tex Event.java

22

References

[1] C. W. Clenshaw. Chebychev series for mathematical functions. National Physical
Laboratory Mathematical Tables 5, Her Majesty’s Stationery Office, London, 1962.

[2] D. E. Knuth. The Art of Computer Programming, Vol. 2. Addison-Wesley, Reading,
Mass., second edition, 1981.

[3] P. L’Ecuyer and S. Côté. Implementing a random number package with splitting facilities.
ACM Transactions on Mathematical Software, 17(1):98–111, 1991.

[4] S. Wolfram. The Mathematica Book. Wolfram Media/Cambridge University Press,
Champaign, USA, third edition, 1996.

23

