Basic building blocks
for a triple-double intermediate format

(corrected version)

Christoph Quirin Lauter

February 26, 2009

Abstract

The implementation of correctly rounded elementary functions needs high intermediate
accuracy before final rounding. This accuracy can be provided by (pseudo-) expansions of
size three, i.e. a triple-double format.

The report presents all basic operators for such a format. Triple-double numbers can
be redundant. A renormalization procedure is presented and proven. Elementary functions’
implementations need addition and multiplication sequences. These operators must take
operands in double, double-double and triple-double format. The results must be accordingly
in one of the formats. Several procedures are presented. Proofs are given for their accuracy
bounds.

Intermediate triple-double results must finally be correctly rounded to double precision.
Two effective rounding sequences are presented, one for round-to-nearest mode, one for the
directed rounding modes. Their complete proofs constitute half of the report.

1 Introduction

The implementation of correctly rounded double precision elementary functions needs high accu-
racy intermediate formats [7, 4, 1, 3]. To give an order of magnitude, in most cases 120 bits of
intermediate accuracy are needed for assuring the correct rounding property [3]. In contrast, the
native IEEE 754 double precision format offers 53 bits of accuracy. Well-know techniques allow to
double this accuracy [5]. Nevertheless the resulting accuracy, 106 bits, is not sufficient. Tripling
it would be enough.

Using expansions of floating point numbers allows to expand still more the accuracy of a
native floating point type. An expansion is a non-evaluated sum of some floating point numbers
in a floating point format [6, 9, 10]. However the techniques for manipulating general expansions
presented in literature are too costly for the implementation of elementary functions.

In this report, we are going to consider expansions of three double precision floating point
numbers, i.e. we are going to investigate on a triple double format. In our case, we will hence
manipulate floating point numbers (z), + x,,, + x;) with zp, z,,,z; € F.

After making some definitions and an analysis of a procedure that we call renormalization, we
will consider addition and multiplication procedures for triple-double numbers. These will also
comprise operations linking the triple double format with the native double and a double-double
format.

In the end, we will present and prove in particular two final rounding sequences for correctly
rounding a triple-double number to the base double format.

2 Definitions

It will be necessary to define a normal form of a triple-double number because it is clear that the
triple-double floating point format - or that of (pseudo-)expansions in general - is redundant: there
exist numbers & such that there are different triplets (xp, xm, ;) € F3 such that & = zp, + 2, + ;.
It is easy to see that a representation in such a format is unique if the numbers forming the
expansion are ordered by decreasing 0 and if the latter are such that there is no (binary) digit
represented by two bits of the significands of two different numbers of the expansion. The sign bit
has in this case the same role as an additional bit of the significant [6].

As we will see, the need for a normal form for each triple-double number is not directly
motivated by needs of the addition and multiplication operators we will have to define. As long as
the latter operate correctly, i.e. between known error bounds, on numbers whose representation
in a triple-double format is not unique, we are not obliged to recompute normal forms. On the
other hand, when we want to round down such a higher precision number to a native double (in
one of the different rounding modes), a normal form will be needed. If we could not provide one,
we would assist to a explosion of different cases to be handled by the rounding sequence.

Let us first define some notations that are needed for the analysis of numerical algorithms like the
ones that we are going to consider.

Definition 2.1 (Predecessor and successor of a floating point number)

Let be x € F a floating point number. Let be < the total ordering on F.

If x 1is positive or zero we will design by x+ the direct successor of x in F with regard to < and we
will notate x~ its predecessor.

If z is negative we will design by x~ the successor and by x+ the predecessor of x.

In any case, we will design by succ (x) the successor of x in F with regard to < and pred (x) its
predecessor.

This definition 2.1 is inspired by [4].

Definition 2.2 (Unit on the last place — the ulp function)
Let be © € F a double precision number and let be x its successor (resp. predecessor if x is
negative).
So
T — =z if >0andx" # +o0

ulp(z) =< 2-ulp (%) if x# +oo butat =400
ulp (—x) if =<0

This definition is inspired by [4], too. Compare [8] for further research on the subject of the
ulp function.

Concerning the overlap we define finally:

Definition 2.3 (Overlap)
Let xp,x; € F be two non-subnormal double precision numbers.
We will say that xj, and x; overlap iff

|21 = ulp (|n|)

Let be xp,, Xy, x; € F the components of a triple-double number. We will suppose that they are not
subnormals.
So, we will say that there is overlap iff xp and x,, or x,, and x; or x, and x; overlap.

Definition 2.4 (Normal form)

Let be xp, ., x; € F three non-subnormal floating point numbers forming the triple-double number
T+ Tom + 2.

We will say that Ty + x,, + x; are in normal form iff there is no overlap between its components.
Further, we will say that xp, + ., + x; is normalised.

Having made this definition, let us remark that it is deeply inspired by our direct needs and
not by abstract analysises on how to represent real numbers. Anyway, the fact that an expansion
is not overlapping is not a sufficient condition for its representing an unique floating point number.

The implementation of addition and multiplication operators will be finally be based on com-
putations on the components of the operands (or partial products in the case of a multiplication)
followed by a final summing up for regaining the triple-double base format. As we do not statically
know the magnitudes of the triple-double operands and its components, we will not be able to
guarantee that in any case there will not be any overlap in the result. On the other hand, we
strive to develop a renormalization sequence for recomputing normal forms. These will be handy,
as we already said, for the final rounding and, if needed, i.e. if sufficiently good static bounds can
not be given, before handing over a result as an operand to a following operation. Such a renor-
malization sequence must guarantee that for each triple-double in argument (if needed verifying
some preconditions on an initial overlap), the triple-double number returned will be normalised
and that the sum of the components for the first number is exactly the same as the one of the
components of the latter.

Definition 2.5 (The Add12 algorithm)

Let A be an algorithm taking as arguments two double precision numbers x,y € F and returning
two double precision floating point numbers rp,r; € F.

We will call A the Add12 algorithm iff it verifies that

e Ve, yeFr,+r=a+y
o Vr,y € F.|ry| <2753 |y

e, =o0(x+y)
rM=T+Y—Tp

i.e. iff it makes an exact addition of two floating point numbers such that the components of the
double-double expansion in result are non-overlapping and if the most significant one is the floating
point number nearest to the sum of the numbers in argument.

Definition 2.6 (The Mull2 algorithm)

Let A be an algorithm taking as arguments two double precision numbers x,y € F and returning
two double precision floating point numbers rp,r; € F.

We will call A the Mull2 algorithm iff it verifies that

e Ve, yeFrp+r=x-y
° Vx,y cF. |7"l| < 2753~|T'h|

o1, =o0(x-y)
TI=X-Y—Th

i.e. iff it makes an exact multiplication of two floating point numbers such that the components
of the double-double expansion in result are non-overlapping and if the most significant one is the
floating point number nearest to the sum of the numbers in argument.

We will pass over the existence proof of such algorithms. Consult [5] on this subject.
Let us now give some main lemmas that can be deduced from the definition 2.2 of the ulp func-
tion.

Lemma 2.7 (The ulp functions with regard to upper bounds)
Let be xp, and x; two non-subnormal floating point numbers.

So
|2y < ulp (z1) =[] <2772 |z

Proof
Let us suppose that |z;| < ulp (z) and that |z;| >
So we get the following inequality

2_52 . |.’13h‘.

272 2| < ulp (z1)

Without loss of generality, let us suppose now that x; > 0 and that x;r # 400 where m;{ is the
successor of x;, in the ordered set of floating point numbers.
So we know by the definition of non-subnormal floating point number in double precision that
there exists m € N and e € Z such that z; = 2°-m with 252 < m < 2°3. Anyway, one can check
that

4 2¢-(m+1) if m+1 <25

Ty = .
h e+l . 952 otherwise

So 2 cases must be treated separately:

1st case: z; =2°- (m+1)
So we get

20 (m+1)—2m > 27°2.2°.m
1 > 27%%.m

252

In contrast, m > 2°%, so we obtain the strict inequality 1 > 1 which contradicts the hypotheses.

2nd case: z; = 2¢t1. 252
In this case, we know that m = 253 — 1.
We can deduce that

2e+1 . 252 _9¢. (253 _ 1) > 2752 .9¢e. (253 _ 1)
1 > 2-27%

This last inequality is a direct contradiction with the hypotheses. |}

Lemma 2.8 (Commutativity of the z+ and z~ operators with unary —)
Let be x € F a positive floating point number.

So,

(—a)* = = (")
and

(—2)” =—(a7)
Proof

Since the set of the floating point numbers is symmetrical around 0, we get
(—z)" = pred (—z) = —suce (z) = — (z)

and
(—x)” =succ(—x) = —pred (z) = — (z7)

Lemma 2.9 (z* and 2~ for an integer power of 2)
Let be x € F a non-subnormal floating point number such that it exists e € 7 such that

r = £2°.2°
where p > 2 is the format’s precision.
So,
r—x =1~(a:+—a:)
2
Proof

If x > 0, we get
r—x” =220 —2¢7 1. (20T 1) = 2¢7!
and
ot -z =2 (2P 4 1) —2¢.2P = 2°
If x is negative it suffices to apply lemma 2.8. |}
Lemma 2.10 (z and 2~ for a float different from an integer power of 2)

Let be x € F a non-subnormal floating point number such that it does not exist any e € Z such
that

r = £2°.2°
where p > 2 is the format’s precision.
So,
r—x =zt —x
Proof

If x > 0 we know that there exist e € Z and m € N such that
r=2°"m
with
2P <m < 207!

because x is not exactly an integer power of 2.
Further, one checks that

rt =2 (m+1)
even if m = 2P~ — 1 and that

T =2°(m—-1)
because the lower bound given for m is strict.
So one gets

x—x- = 2°m—-2°(m—-1)
- 92°
= 2°-(m+1)—2°m
= 2t -z

If x is negative it suffices to apply lemma 2.8. |

Lemma 2.11 (Factorized integer powers of 2 and the operators 2z and z7)
Let be x € F a non-subnormal floating point number such that % - x s still not subnormal.

So,
1 o
7.:1: 7."1;+
(%) =3

and

Proof
Without loss of generality let us suppose that z is positive. Otherwise we easily apply lemma 2.8.
So, if z can be written 2 = 2¢ - m with m + 1 < 2P+ where p is the precision then

1'1. +:(2371_m)+:2671.(m+1):1'1.4’
2 2
Otherwise,
1 " e—1 +1 + e—1+1 [
Z . :(2 .(QP 71)) =92 .OP — Z . p
2 2
One can check that one obtains a completely analogous result for x=. |}

Lemma 2.12 (Factor 3 of an integer power of 2 in argument of the " operator)
Let be x € F a positive floating point number such that x is not subnormal, = and (3 - x)+ are
different from 400, and that Je € Z . © = 2°¢ - 2P where p > 3 is the precision of the format F.
So the following equation holds

(3-2)" +ulp(z)=3-2F

Proof
We can easily check the following
B-2)" +ulp(x) = 3 -2)+ (7 —2)
= (3.2¢.) + (2027 —20. 9P
= ((2+1)-2°-2")" 420 (2P 4 1) —2°. 2P

(
1 +
= <2 22 +2- 5 2e~2p) +2¢

— (27t (2 2r) 4oe
20T (2P + 207 1) 4 2°
= 2¢F1. (2P 4 2r7h) 2ot 4 2°
= 20 (274 277) 3. 2°

= 3.2°0.2P 43.2°
3-2°- (2P 4 1)
3.(26.2p)+

= 3.z"

Lemma 2.13 (Monotony of the ulp function)
The ulp function is monotonic for non-subnormal positive floating point numbers and it is mono-
tonic for non-subnormal negative floating point numbers, i.e.

Va,y € F . denorm < x <y = ulp (z) < ulp (y)
V
Ve,y e F . z <y < —denorm = ulp (x) > ulp (y)

where denorm is the greatest positive subnormal.

Proof

As a matter of fact it suffices to show that the ulp function is monotonic for non-subnormal floating
point numbers and to apply its definition 2.2 for the negative case.

Let us suppose so that we have two floating point numbers x,y € F such that denorm < z < y.

Without loss of generality we suppose that 27 # 400 and that y™ # 40o0. Otherwise we apply
definition 2.2 of the ulp function and lemma 2.11.
So we get

ulp (y) —ulp(z) =y" —y—at +a

It suffices now to show that
yT—at —y+2>0

We can suppose that we would have

T = 2% .m,

with ey, e, € Z, 27 < my,m, < 2Tt — 1.
Since y > x, we clearly see that

(eya my) Zlex (efw mz)

So four different cases are possible:

1.
xt = 2% . (my +1)
y+ = 92¢. (my + 1)
Hence
yt—at —y+az = 2% (my+1)—2% - (my +1) — 2% -my, +2° - my,
2% — 2%
> 0
2.
t = 2% . (m,+1)
yt o= 2owtl.gp
which yields to
yT -zt —y+a = 20T 2P 2% (m, + 1) —2% . (2PF — 1) 4 2% .y,
200 — 2%
> 0
3.
$+ — 26w+1 . 9oP
yt o= 2% (my +1)
One checks that
yt—at —y+ax = 2% (my+1)—2%T1. 2P —2% .y 2% . (2PT1 1)
26w — 2%
> 0

= 2ez+1 . 9P
y+ — 9¢eytl 9p
Thus
yT—at —y+a = 20Fh. 2P _gcetliogp ey (201 1) 4 2% . (2071 1)
20 — 2%

> 0

This finishes the proof. |

3 A normal form and renormalization procedures
Let us now analyse a renormalization algorithm. We will prove its correctness be a series of lemmas
and a final theorem.
Let be the following procedure:
Algorithm 3.1 (Renormalization)
In: ap,an,,a; € F verifying the following preconditions:
Preconditions:
e None of the numbers ap, ap,,a; is subnormal
e ajp and a,, do not overlap in more than 51 bits

® a,, and a; do not overlap in more than 51 bits

which means formally:

lam| < 277 |ax
il < 277 |am|
)] < 27" Jay

Out: rp,ry,r €F

(tin,tu) «— Add12(am,a;)
(rp,ter) <« Add12(ap,tipn)
(rm,m1) — Add12 (ty,ty;)

Consult also [6] on the subject of this algorithm. Let us give now some lemmas on the properties
of the values returned by algorithm 3.1 and on the intermediate ones.

Lemma 3.2 (Exact sum)
For each triple-double number ap+a., +a;, algorithm 3.1 returns a triple-double number rp, 41, +r;
such that

ap +ay +a; =1 +1rm + 7]

Proof
This fact is a trivial consequence of the properties of the Add12 algorithm. |

Lemma 3.3 (Rounding of the middle component)
For each triple-double number ap+a,,+a;, algorithm 3.1 returns a triple-double number r,+r,, +7;
such that

T =0 (T +1771)

The same way, the intermediate and final value will verify the following properties:

tin = o(am+ap)
rn, = ol(ap+tip)
bl < 27%% -ty
ltar] <27 |y

In particular, v, will not be equal to 0 if r; is not equal to 0.

Proof
This fact is a trivial consequence of the properties of the Add12 algorithm. |

Lemma 3.4 (Upper bounds)
For all arguments of algorithm 3.1, the intermediate and final values t1y, ty;, to; and r,, can be
bounded upwards as follows:

tin] < 27 ay]
tul < 27]
ltar] < 2772 ay]
|tm| < 270, |ah‘
Proof
1. Upper bound for [t;]:
‘We have supposed that
|am| 272 |an|

<
)] < 27 ag
So we can check that

|am | + fai] +27° - Jap|
272. |ah| + 274, |CLh| + 254, |ah\
27" |ay

[t15]

IAIACIA

2. Upper bound for [t
Using the properties of the Add12 algorithm we can get to know that

[t1] <275 [ty

which yields finally to
[t1] < 27°% - |ay

3. Upper bound for |ty:

‘t21| 2753

“ |7l
27% o (lap] + |tin])
2—53 . |ah‘ =+ 2—53 . |t1h| 4 2—106 . ‘ah| + 2—106 . |t1h|

2_53‘|ah‘+2_54‘|ah|+2_106‘|ah‘+2_107'|ah|
2752

VAN VAN VAN VAN VAN

“lan|

4. Upper bound for |r,,|:

[rm] < |t @ tay]
< ftan] |t + 2753 - [tay 4+t
< 27°2. lan| + 2754, lan| + 27105, lan| + 2107 lan]
< 270 ay

Lemma 3.5 (Special case for r;, = 0)
For all arguments verifying the preconditions of algorithm 3.1, r, will not be equal to 0 if r,, is
not equal to 0.

Formally:
rn,=0=7r,=0
Proof
Let us suppose that r;, = 0 and that r,, # 0. So we get
Iral = [o(an + t1n)]
> [o (27" an)
= 27! ay|

because we have already shown that
ltin] <27 fan]

So for rp, being equal to 0, a; must be equal to 0.
In contrast, this yields to t1;, = 0 because

rp =0(0+1t1n) =tip

This implies that ¢1; = 0 because of the properties of the Add12 procedure. The same way, we
get to; = 0.
We can deduce from this that

0#7r,=0(0+0)=0

which is a contradiction. JJ

Lemma 3.6 (Lower bound for |r;|)
For all arguments verifying the preconditions of algorithm 3.1, the final result vy, can be bounded
in magnitude as follows:

rnl > 27" g

Proof
We have that
rh = ap D lip

Clearly, if aj, and t1;, have the same sign, we get
7l > lan| > 27" |y
Otherwise - aj, and 15 are now of the opposed sign - we have already seen that
[t1in] <271]

So, in this case, too, we get
ral > 271 Jan]

10

Corollary 3.7 (Additional property on the Add12 procedure)
Let be ry, and r; two double precision floating point numbers returned by the Add12 procedure.

So)
| < 5 ulp (7n)

Proof

By the definition 2.5 of the Add12 procedure, we have rp, + 7, = x +y and r;, = o (x + y) and
r; = x+y—r;. Thus the number r; = (z +y) —o(z +y) = (zr +y) — (z ® y) is the absolute error
of correctly rounded IEEE 754 addition. It is bounded by 5 - ulp () which gives us the desired
result. ||

Ju

Theorem 3.8 (Correctness of the renormalization algorithm 3.1)

For all arguments verifying the preconditions of procedure 3.1, the values returned rp, ., and r;
will not overlap unless they are all equal to 0 and their sum will be exactly the sum of the values
in argument ayp, a, and a;.

Proof

The fact that the sum of the values returned is exactly equal to the sum of the values in argument
has already been proven by lemma 3.2.

Without loss of generality, we will now suppose that neither 7, nor r,, will be 0 in which case all
values returned would be equal to 0 as we have shown it by lemmas 3.5 and 3.3.

Using lemma 3.3, we know already that r,, and r; do not overlap. Let us show now that r;, and
rm do not overlap by proving that the following inequality is true

3
7| < 1 ~ulp (1) < ulp (rp)
There are two different cases to be treated.

1st case: t5; =0
We know that
Tm =0 (tay +t11) =0 (0 +t1;) =ty

When showing lemma 3.4, we have already proven that
[t <27°% - |an
Using lemma 3.6, we therefore know that
7| < 278 |
which is the result we wanted to prove.

2nd case: t9; # 0
Still using lemma 3.4, we have shown that

ltin] <271 |y

In consequence, when the IEEE 754 [2] addition rp, = ap, @ t15, is ported out, the rounding will be
done at a bit of weight heigher than one ulp (¢1) because ty; is strictly greater than 0 and because
ap and t1; do not completely overlap. Therefore we can check that

[t2i| > ulp (t1n)

With the result of lemma 3.4 we already mentioned, we can deduce that

[ta:] < |tail

N =

-ulp (tin) <

DN =

11

So one can verify the following upper bound using among others lemma 3.7:

[rm| = o (tar + tu1)]

(2)
(2amon)

= Z-ulp (rn)

IN

IN

One remarks that the last simplification is correct here because ulp is always equal to an integer
power of 2 and because the precision of a double is greater than 4 bits. |}

4 Operators on double-double numbers

Since we dispose now of a renormalization procedure which is effective and proven, we can now
consider the different addition and multiplication operators we need. They will surely work finally
on expansions of size 3, but the double-double format [5] must be analysed, too, because it is at
the base of the triple-double format. We already mentioned that on definition and analysis of
this operators, we need not care such a lot of the overlap in the components of a triple-double
number any more: as long as the overlap does not make us loose a too much of the final accuracy
because several bits of the “significand” are represented twice, overlap is not of an issue for
intermediate values. At the end of triple-double computations, it will be sufficient to apply once
the renormalization procedure. In order to measure the consequences of an overlap in the operands
on final accuracy and in order to be able to follow the increase of the overlap during computations
in triple-double, we will indicate for each operator which produces a triple double result or which
takes a triple-double operand not only a bound for relative and absolute rounding errors but also
a bound for the maximal overlap of the values returned. All this bounds will be parameterised by
a variable representing the maximal overlap of the triple-double arguments.

4.1 The addition operator Add22

Let us analyse first the following addition procedure:

Algorithm 4.1 (Add22)

In: two double-double numbers, ap, + a; and by, + b;
Out: a double-double number ry, + r;
Preconditions on the arguments:

lai| <27°% - Jay|

by < 27%% - |by,|

Algorithm:

12

t1 < ap, D by,
if \ah| Z |bh| then

to «— ap © 11
t3 <ty @ by,
ty —t3D b
ts —ty D ay

else

ta by, Ot
t3 «—t2 D ay
ty «— t3 P ay
t5 — 14 Db

end if
(Th, ’I“l) «— Add12 (tl, t5)

Compare [1]| concerning algorithm 4.1.

Theorem 4.2 (Relative error of algorithm 4.1 Add22 without occurring of cancellation)

Let be ap, + a; and by, + b; the double-double arguments of algorithm 4.1 Add22.
If ap, and by, have the same sign, so we know that

rh+ 1= ((an +ap) + (bn + 1)) - (1 +¢)

where ¢ is bounded as follows:
|€| S 27103,5

Proof
Since the algorithm Add22 ends by a call to the Add12 procedure, it suffices to show that

t1+t5 = ((ap +ar) + (bp + b)) - (1 +¢)

Further, since the two branches of the algorithm are symmetrical, we can suppose that |ay| > |b|
and consider only one branch without loss of generality. Finally, we remark that the following
lines of the Add22 procedure constitute a non-conditional Add12 with arguments a;, and by,
and the result t; + t3:

t1 =ap @by
to=ap Ot
tz3 =ty D by,

Thus, we get

s = taDa

(ta +ap) - (1 +¢e1)

= ((ts+0bl) - (L+e2)+a;)- - (1+e1)
= ts3ta +b+6

with
O=1t3-ex+bj-eq+t3-e1+b-c1+tl3-€x-69+b-c9-63+a; €1

For giving an upper bound for |§], let us first give an upper bound for |t3], |a;| and b; as function
of |ap + by| using the following bounds that we know already:

la)| < 27%% - |ap|
] < 27%%. by
lts] < 27°%. |ty

13

We get therefore

lts] < 2753t
2753, |ah D bh|

< 27 ap + by +271% - |ay, + by
and than
la)] < 27°% - |ay]
< 27 ay, + by

The last bound is verified because we suppose that a; and b, have the same sign.
Finally, since |ap| > |bs],

] < 27%%. by
§ 2753 . |ah|
< 27 ay + by

Thus we get for |4]:
16] Jan + by - (27106 4 97159 | 9106 | 9106 | 9=150 | 9—106 4 9=150 4 9=212 | 5212 | 9-106)

<
< Jap 4 by (27100 427106 | 9158 4 9159 4 9211

Let us now give a lower bound for |ap, + a; + by, + b;| as a function of |aj, + by| in order to be able
to give a relative error bound for the procedure Add22. We have that

la; +bi] < ag| + by
< 2758 ap| 42753 - by
< 277 ay
< 2772 ay, + by

So we can check that
lan + a4+ by +by| > (1—27%) - |a), + by
Concerning ||, this yields to

1
0] < lan +ar+bn+bil - T— =5 (27104 4 27106 9= 188 4 =159 4 g=211)

2
One easily checks that

1

—104 | 5-106 | §—158 | §—159 | o—211 —103,5
T (27 2T 4 27 0T 4 9 <0
from which one trivially deduces the affirmation. |

Theorem 4.3 (Relative error of algorithm 4.1 Add22 with a bounded cancellation)
Let be ap, + a; and by, + b; the double-double arguments of 4.1 Add22.
If ap, and by, are of different sign and if one can check that

o] <277 - |ax|

forp>1
so the returned result will verify

rn 1= ((an +ar) + (b +b1)) - (1 +¢)
where € is bounded as follows:

le| < 27103 R e ST
= 1 —o-n 252 =

14

Proof
Let us reuse the results obtained at the proof 4.1 and let us start by giving an upper bound for
|bi] as a function of |ay,|:

[ba] < 27°% - [bu| < 27°37H - fay

Let us now continue with a lower bound for |aj, + by| still as a function of |ay|:
|ah +bh| > |ah| . (1 - 27”)

We get in consequence
—53

2
la;| < T—9=r" lan + by
and
27537;1,
|bi| < 1= lan + ba]
Thus we can check that
1—2—#-1

5 < by|-27103.
0] < |an + bn| .

Once again, we must give a lower bound for |aj, + a; + by, + b;| with regard to |ap, + bp|: We know
that

lag + b < lag| + |bi]
S 2—52.|ah‘
2—52
< m'\ah—i-bﬂ
So o
1-27# 2"
b b > byl —m———
lan, + a; + by, + by > |ap + byl 1 on

Thus we get for |

1—-2*¢ 1—2#1

5l o< b bl —— = 9-103 - %

‘| < |ah+al+ h+ l| 1_9-n_9-52 1—9—n
1 —27#1

_ 5—103

= Jlap+a;+b,+0b 2 [—on _ o5

So finally the following inequality is verified for the relative error e:

1—27n7t
—103
=2 =

We can still give a less exact upper bound for this term by one that does not depend on p because
w>1:
1—2-»t
1—-2—#»—-2-52 =

NS

<2
1 =
1 _9-52
SO

le| < 27102

Theorem 4.4 (Absolute error of algorithm 4.1 Add22 (general case))
Let be ap, + a; and by, + b; the double-double arguments of algorithm 4.1 Add22.
The result r, 4+ r; returned by the algorithm verifies

Th+ 1= (an +a;) + (bp + b)) +6
where ¢ is bounded as follows:

|0] < max (2_53 - lag + by ,2_102 lan + a; + by, + bl‘)

15

Proof
Without loss of generality, we can now suppose that

1
5 " 10n| = |On| = |GR
5 - lanl < [b] < Jal

and that ap and b, have different signs because for all other cases, the properties we have to show
are a direct consequence of theorems 4.2 and 4.3.
So we have

1
3 lan| < [bn| <2-an|

and

1
3 br| < lan| < 2-[by]

So the floating point operation
tr =ap Dby
is exact by Sterbenz’ lemma [11]. In consequence, ¢35 will be equal to 0 because, as we have already

mentioned, the operations computing ¢; and t3 out of a, and b, constitute a Add12 whose
properties assure that

t3=ap+by, —t;

We can deduce that
ty=t3 P b, =10

and can finally check that
ts =ty D a; = (t4+al) . (1—1—8*)

with
|€>k| S 2—53
So we get
r,+r =11 +1t5 = (ah+al+bh+bl)+5
with

6] <27°% - Ja; + by
which yields to the bound to be proven

|5| = max (2753 . \al + bl| ,27102 . \ah +a;+ by + bl‘)

Theorem 4.5 (Output overlap of algorithm 4.1 Add22)
Let be ap, + a; and by, + b; the double-double arguments of algorithm 4.1 Add22.
So the values ry, and r; returned by the algorithm will not overlap at all and will verify

] <27°% - Jry]
Proof

The proof of the affirmed property is trivial because the procedure Add22 ends by a call to
sequence Add12 which assures it. ||

16

4.2 The multiplication operator Mul22

Let us now consider the multiplication operator Mul22:

Algorithm 4.6 (Mul22)

In: two double-double numbers, ap + a; and by, + b;
Out: a double-double number r, + 7,
Preconditions on the arguments:

|ai] <27° - Jap|
[bi] < 27%% - |by|
Algorithm:

(tl, tg) «— Mul12 (ah, bh)
l3 < ap @b
ty —a; @by
by t3 Dty
teg < ta s
(Th, ’I“l) — Add12 (tl, t6>

Compare also to [1] concerning algorithm 4.6.

Theorem 4.7 (Relative error of algorithm 4.6 Mul22)
Let be ap, + a; and by, + b; the double-double arguments of algorithm 4.6 Mul22.
So the values returned ry, and r; verify

rht 7= ((an +ar) - (b + 1)) - (1+¢)
where € is bounded as follows:
le| < 27102
Further vy, and r; will not overlap at all and verify
1] <27%% - |y

Proof

Since algorithm 4.6 ends by a call to the Add12 procedure, the properties of the latter yield to
the fact that rj, and 7; do not overlap at all and that |r;| < 2753 |ry|.

In order to give upper bounds for the relative and absolute error of the algorithm, let us express
ts as a function of t9, ap, a;, by and b; joined by the error term §.

We get

te = to®(an @b ®a;®by)
= (to+(an-bi-(I+er)+a;-bp-(14e2)) - (1+e3)) (1 +ea)

where |g;| <2753 i =1,2,3,4.
Simplifying this expression, we van verify that

t¢=ta+an-by+a;-b,+9

0] < lag-bi+ap-by-ex4a;-by-ea+ap-b-es+ap-b-e1-ez+a;-by-es+a;-by-er-es
4ap-by-es+a;-by-egtap-by-er-cata;-by-eo-eq4tap-by-cz-ey

+ap -by-e1-e3-eatar-by-ez-extap-by-ea-es ey
|ah-bh\-(7-2_106+6-2_159+2_211)

|ah . bh‘ . 2—103

17

For checking the given bound, we have supposed the following inequalities:
Jar| <27% - |ay|

and
Jar] <27 |ap|
Let us now give a lower bound for |(ap, + a;) - (by, + ;)| as a function of |ay, - b|. For doing so, we
give an upper bound for |ay, - b; 4+ a; - by + a; - byl
We verify since:

lan - by +a; - by, +a; - by lap, - by| + |ag - bp| + |a; - by

<
< 2753, |ap - by +2753. lan - by 427106, lan - b
<

2751 . |ah . bh|

This yields to

[(an +ai) - (bn +b1)] > ap-bu|- (1—27°)

1
5 lan - bl

Y

from which we deduce that
6] <271%% |(ap + a;) - (b + by)|

which gives us as an bound for the relative error
mh+ 11 = (an +ar) - (b +b1) - (1 +¢)

with || < 271020

5 Addition operators for triple-double numbers

5.1 The addition operator Add33

We are going to consider now the addition operator Add33. We will only analyse a simplified
case where the arguments’ values verify some bounds statically known.

Algorithm 5.1 (Add33)

In: two triple-double numbers, ap + a, + a; and by, + by, + b;
Out: a triple-double number ry, + ry, + 7

Preconditions on the arguments:

bl < 2l
aml < 2% Jayl
lai] < 27 am|
b < 270 by
b <270 by,
a, > 4

a, > 1

Bo = 4

fu > 1

Algorithm:

18

(?"h, tl) «— Add12 (ah, bh)
(tg, t3) «— Add12 (am, bm)
(t7,t4) «— Add12 (tl,tg)
tg «— a; Db

ts «— t3 Dty

tg — t5 D tﬁ

(Tm, ’I’l) «— Addi12 (1577 tg)

Theorem 5.2 (Relative error of algorithm 5.1 Add33)

Let be ap + am +a; and by, +b,, +b; the triple-double arguments of algorithm 5.1 Add33 wverifying
the given preconditions.

So the following egality will hold for the returned values ry, T, and r;

mh+Tm 1= ((an + am +ar) + (by + b + b)) - (1 +¢)
where ¢ is bounded by:
‘€| < 2—min(ao+au,,ﬂo+5u)—47 492 min(a,,B,)—98

The returned values ry, and r; will not overlap at all and the overlap of ry, and r,, will be bounded

by the following expression:
7| < 27 min(a,,B86)+5 | ral

Proof
The procedure 5.1 ends by a call to the Add12 sequence. One can trivially deduce that r,, and
r; do not overlap at all and verify

1] <2752 |7

Further, it suffices that the bounds given at theorem 5.2 hold for ¢7 and tg because the last addition
computing r,, and r; will be exact. The same way, one can deduce the following inequalities out
of the properties of the Add12 procedure. They will become useful during this proof.

[t <2755 - Jry|
|t3] <279 [ty
|ta] <275 t7]

Let us start the proof by giving bounds for the magnitude of r, with regard to ay:
We have on the one hand

lrn] = lo(an + b))l
= o(|an + bnl)
< o(lan| + [bn])

3

< o (lanl+ 3 fonl

< o(2-|anl)

= 2'|ah|

and on the other
lrn| = o(lan + bnl)

> o2 Jaul
e 4 h
— Ll
— Z ap

19

So we know that 1 - |ay| < |rn| < 2-]apl.
It is now possible to give the following upper bounds for |t1], |t2], |3, |t7], |t4], |t6] and |ts]:

1] 277 [l
2753 . 22 . |ah|

2751

INIA

“lan]

o (|am + bml)
o (lam| + [bml)
o (2_0“’ . |ah| + 2P . ‘bh|)

3
o (2—% Jan] + 270 2 |ah|>

o (2— min(a,,8,)+1 | |ah|>

= 9~ min(a,,B,)+1

[ta]

IN A CIA

IN

IN

“|an|

2—53 ‘tg‘
9~ 53 2—m1n(ao,ﬁo

|t3]

IAIA

Y an]

— 9~ min(as,8,)—52 ap|

[t7]

o([tr +t2|)
(Ita] + [t2])

)

0(2 min(a,,B6)+2 ‘ah|>

9- min(a,,B6)+2 |

o

IAIA

IN

IA

|an]

2755 - Jtq]
9~ 53 .9~ min(ae,B6)+2

=
INIA

“lan]
o min(a,80)~51

~|an]

[t

IN

o (lar] + |bd])
° (2% L2 a4 2P 2P Z : |ah|)

IN

IN

(2 min(ao+o,B0+8u)+ |ah|>

92— min(ao+ay,B0+8u)+1

“|an|

and finally

IN

121 (Its\ + [tal)

IN

— min(a,,8,)—52 |ah‘+2—m1n(ao,ﬁo) 51 |ah|)

(2—m1n ao,B0)—50 |a ‘)

9— min(ao,f3,)— ‘ah|

IN

20

Using the fact that the addition Add12 is exact, it is easy to show that we have exactly
rp+tr+t3+ts =an+am + by + by
Further, we can check

ts = (t3@ats) D1 (a; B3 b))
= t3t+tg+a+b+96

with
[0] < |ts|-es+|ta] -2+ |ai| -3 + b1 - €3+ |t3] - €1 + |ta] - €1 + |t3] - €1 - €2
+lta] 124 |ag| 1 4|l e2 4 |ag| €1 e+ [bi] -e1 €3
where for ¢ € {1, 2,3}, ¢; is the relative error bound of the floating point addition @; and verifies
lei| < 2753
So we get immediately
rh 4+ Tm 1 =18 +tr +ts = (ap +am +a;) + (bp + b +01) + 0

Let us now express |(an + am + a1) +

—~

by, + by, + by)| as a function of |ay|:

lan + am +ar] < an| + |am] + [ai
< \ah| + 27 % . |ah| + 27X, |ah|
< 2 ag
and, the same way round,
|bh + bm + 01| < 2 |by]
< 2o
7.a
S 5 olan

which allows for noting
[(an + am + @) + (by, + b + by)| < 2% - |ay|

In order to give a lower bound for this term, let us prove an upper bound for |b, + @, + b + a; + by
as follows

[br, + am +bm +a; +bi] < |br] + |am| + |bm] + |ai| + |bi]

3 3
< 7ol +27% Jan] + 27 Fo. 1 lan] + 27T
3
z_ﬁo_ﬁu ..
+ 7 lanl
< ! |an|
PR— a
=3 h

So we get
1
|(an + am + a;) + (by + by + by)| > 3 lan|

Using this bounds, we can give upper bounds for the absolute error |§| first as a function of |ay|
and than as a function of |(ap + am + a;) + (bp, + by + b;)| for deducing finally a bound for the
relative error.

So we get

[0] < t3|-e3+[ta| €2+ |ag| -3+ [bi] - €3 + [t3| - €1 + [ta] - €1 + |t3] - €1 - €2

+|ta] €1 a4 |ar] €1+ |bi| - g2+ ag| €1 - €3+ |bi] €1 - €3

lan] - €’

IN

21

with

9—53 9~ min(ao,6,)—52
9=53 , 9—min(ao,8,)—51
2—53 .90y

9=93 , 9=Bo—Pu

9—53 9~ min(ao,6,)—52
9—53 , 9—min(ao,8,)—51
9—106 9—min(a,8,) 52
9—106 | 9—min(ao,8,) 51
9=53 9g—ao—au

953, 9=Bo—Pu

9—106 g—ao—au

9—106 2*50*[31‘

9~ min(a,,80)=101 4 9— min (oo 4y, Bo4Bu)—50

AN+ + + + A

This yields to
Th +rm + 1= ((an + am + ar) + (bn + by + 1)) - (1 +¢€)
with
‘5| <9 min(a,,B,)—98 +2- min(ao+oy,B0+08.)—47
In order to finish the prove, it suffices now to give an upper bound for the maximal overlap between

rp, and 7, because we have already shown that r,, and r; do not overlap at all.
So we can check

Irs| < o(|ts] + |tel)
< o (2— min(a,,B8,)—50 | |ah‘ +2- min(ao+au,B0+8u)+1 | ‘ah|)
< o (27 min(a,,B8,)—48 | |7"h| +92- min(oo+awy,Bo+08u)+3 | |7"h‘)

and continue by giving the following upper bound

[rm| = o(|tr +ts])
< o([te| + [ts])
< o (2— min(a,,B6)+4 | ‘Th| +o (2— min(a,,B8,)—48 | |7'h| + 2—min(ao+au7ﬁo+6u)+3 . |Th|)>
< o (|7,h| . (27 min(a,,By)+4 +2- min(a,,B80)—48 +2- min(a+au,ﬁo+ﬁu)+3+
92— min(a,,8,)—101 +92- min(ao+au,ﬂo+ﬂu)—50))
< 27 min(a,,B80)+5 | ral

This is the maximal overlap bound we were looking for; the proof is therefore finished. Jj

Theorem 5.3 (Special case of algorithm 5.1 Add33)
Let be ap + ap + a; and by, + by, + by the triple-double arguments of algorithm 5.1 Add33 such
that

ap =am,m =a; =0

So the values Ty, rm and r; returned will be exactly equal to
ry + Ty + 1 =by + by, + 0

The values ry, and r; will not overlap at all. The overlap of ry, and r,, must still be evaluated.

22

Proof
We will suppose that the Add12 procedure is exact for a;, = a,, = a; = 0 if even we are using
its unconditional version. Under this hypothesis, we get thus:

rn = o(0+0by)=0bp
t7, = 04b,—0,=0
to = by

t3 = 0

t; = O(0+bm):bm
ty2 = 0

t6 = O@bl:bl

ts = 060=0

ts = 0db =10

rm+17 = by, +b

In consequence, the following holds for the values returned:
rh+ T+ 1 =bp + by + by

Clearly r,, and r; do not overlap because the Add12 procedure the algorithm calls at its last
line assures this property.]

5.2 The addition operator Add233

Let us consider now the addition operator Add233. We will only analyse a simplified case where
the arguments of the algorithm verify statically known bounds.

Algorithm 5.4 (Add233)

In: a double-double number aj, + a; and a triple-double number by, + b, + b;
Out: a triple-double number ry + ry, + 7

Preconditions on the arguments:

lbul < 277 ay|

la)] < 27%% - |ap|
b < 277 by
i < 270 by

Algorithm:

(’/‘}L, t1) «— Addi12 (ah, bh)
(t2,t3) «— Add12(a;, by,)
(ts,ts5) — Add12 (t;,ts)
te — t3 D by

t7 «— tg D5

(rm,) «— Add12 (t4,t7)

Theorem 5.5 (Relative error of algorithm 5.4 Add233)

Let be ap + a; and by, + by, + b; the values taken in argument of algorithm 5.4 Add233. Let the
preconditions hold for this values.

So the following holds for the values returned by the algorithm ry, v, and ry

rh 4+ rm 1= ((ap + am +a;) + (bp + b +b1)) - (14 ¢€)

23

where ¢ is bounded by
‘€| S 27ﬁ07ﬁu752 + 27ﬁ07104 +27153

The values r,, and r; will not overlap at all and the overlap of rn, and r,, will be bounded by:

Pl <277 - 1)

with
v = min(457/80 — 4,85+ Bu — 2)
Proof
We know using the properties of the Add12 procedure that
rn+ti = ap—+by
ta+ts = a;+bn,
ta+1ts = t1+12

Tm +T1 =14+ 17
Supposing that we dispose already of a term of the following form
tr =ts+t34+0,+96
with a bounded |§|, we can note that
rh 4+ 1rm+ 1= (ap +a;) + (b +bm + b)) +6
Let us now express t7 by t5, t3 and b;:

tz = t5Dts
= t5D(t3 D b)
= (t5+(t3+bl)-(1+€1))'(1+62)

with |e1] <2753 and |eg] < 2753,
We get in consequence

tr=ts+t3+b +t3-e1+b-e1+ts5-ea+t3-ca+b-eat+ts3-€1-ea4+b-€1-€2

and we can verify that the following upper bound holds for the absolute error ¢:

‘(5| = |t3-61+b1~€1+t5-52+t3-82+bl~€2+t3-81~82+bl-51-52|
S 2_53~|t3|+2_53~|bl|+2_53‘|t5|+2_53-‘bl‘+2_106‘|t3|+2_106'|bl|
< 2792 tg| + 270 |y 42753 - |t

Let us get now some bounds for |t3], |b;] and |¢5], all as a function of |ay|:
|by| < 9=Bo=Pu , | < 9=Bo=Bu—2 |an]

which can be obtained using the preconditions’ hypotheses. Further

lts] < 275 [ty
= 27%. |O (al + bm)|
< 2792, |al+bm|
< 27 g +27%2 - by,
< 27105 ap| 4 27F0 752 by
< 27105 gy | F27F TR gy,

24

and finally

ts] < 27 [t
— 9753, |o (t1 + t2)|
< 27|ty + b
< 2752 |4y + 2752 |ty
< 27105 | 42752 o (ag + byy)|
< 27'% o (ap + b))l + 277 - fag + by
< 27100 gy 4 by 4+ 275 ag| + 2700 by
< 27100 g | 427106 g, 427104 (g, | 4 278058 g,
< Janl- (27192 4 27059)
So we have
6] < Jan| - (27157 4 2P 106 4 9—BoBu53 | 9155 4 9—F,—106)
< apl- (Q_BO_Bu_53 4 9 Bo—105 2—154)

Let us now give a lower bound for |(ap + a;) + (br + by + b1)| as a function of |ay| by getting out
an upper bound for |a; + by, + by, + b;| as such a function:

la; + by, + by + by lar| + b | + [bm] + |bi]

<
< ap|- (277 4272 427072 27 FomFum2)

Since (B, > 1, 8, > 1 we can check that
la; + b + by + 0| < 27t lan|

In consequence

1
lan + (@i + b + b + i) 2 5 - an]

Using this lower bound, we can finally give an upper bound for the relative error € of the considered
procedure:
rh 4 T+ 1= ((an +ar) + (b + by + b)) - (1 +¢)
with
|| < 27Fo—Pu=52 | 9=Fo—104 | 9-153

Last but not least, let us now analyse the additional overlaps generated by the procedure. It is
clear that 7, and r; do not overlap at all because they are computed by the Add12 procedure.
Let us merely examine now the overlap of rj, and r,,.

We begin by giving a lower bound for 7}, as a function of ay:

Irn| = [o(an +bs)|
> o(|ah+bh|)
> o3l
- 4
> o<1~|ah|)
- 2

1

= §'|ah\

Let us then find an upper bound for |r,,| using also here a term which is a function of |ay|:

rml = o (rm + 1)l

25

"Tm —|—7‘1‘

[ta + 7|

ftal + 2 Jts +t3 4 by +)

b 2 [ts| + 2 |ts| + 2 |br] +2-|6]
s + lan| - (2—101 + 2—ﬁ0—52)

+lap| - (2710 4 27F753) 4 |qp| - 27 o Pumt
+lap| - (gfﬁr&rfu? + 9 Bo—104 2—153)

ANRVANR VAR
NN N NN

By bounding finally still |¢4] by a term that is function of |ay,|

[ta] o (t1 +t2)]

2|t + 2 |to

2752 rp| + 2 Jo(ag + by,
275 ap, 4+ bp| +4 - |a; + by

lan] - (277 +27%)

IA A CIN A

we obtain

rnl < lanl- (27
49 Bot1
L9101
+27ﬁ0752

4 o104
+2—ﬁ0—53
492 Bo—fu—1
+2*ﬁo*5u*52
4 9—B.—104
+2—153)

lan] - (2*47 49 B2 27ﬁ07ﬁu)

IN

We finally check that we have
|7°m| < |7“h| . (2—46 + 9—=Bo+3 + Q—Bo—ﬁu+1)
from which we can deduce the following bound
[rm| <277 - [ra|

with
Y > min(45aﬂo 747ﬂo +ﬂu - 2)
This finishes the proof. |}

6 Triple-double multiplication operators

6.1 The multiplication procedure Mul23
Let us go on with an analysis of the multiplication procedure Mul23.

Algorithm 6.1 (Mul23)
In: two double-double numbers ay, + a; and by, + by

26

Out: a triple-double number ry, + r,, + 7
Preconditions on the arguments:

2753 . |ah‘

27 |by|

|ai

|bi]

INIA

Algorithm:

(Th, tl) «— Mul12 (ah, bh)

(tg, t3) — Mul12 (ah, bl)

(t4, t5) «— Mul12 (al, bh)

e < a; ® by

(t7, tS) — Add22 (tg, t3, t4, t5)

(tg, th) «— Add12 (tl, tﬁ)

(’]"m, T’l) — Add22 (t77 tg, tg, th)

Theorem 6.2 (Relative error of algorithm 6.1 Mul23)

Let be ap, + a; and by, + b; the values taken by arguments of algorithm 6.1 Mul23
So the following holds for the values returned rp, rp, and r:

Th +7Tm + 1= ((an +ar) - (bp +01)) - (14¢)

where ¢ is bounded as follows:
|€| < 27149

The values returned r,, and r; will not overlap at all and the overlap of ry, and r,, will be bounded
as follows:
Pm] <274 |l

Proof
Since algorithm 6.1 is relatively long, we will proceed by analysing sub-sequences. So let us
consider first the following sequence:

(tg, t3) «— Mul12 (a;“ bl)

(t4,t5) «— Mul12 (al,bh)
(t7, tS) — Add22 (tg, t3, t4, t5)

Clearly t7 and tg will not overlap. The same way to and t3 and t4 and ¢5 will not overlap and we
know that we have exactly the following egalities

ta+t3 = ap-b
ta+ts = by-a
Further we can check that
lts] < 27°%-[o(an - by)
§ 2_52 . |ah . bl|
and similarly
|t5| < 2752, |bh . al|
So we have on the one side
2753 Jtg + ts] 2793 Jtg] 4+ 2773 - |5

<
S 2_105'|ah'bl|+2_105'|bh'al|

27

and on the other

2_102~|t2+t3+t4+t5‘ 2_102_|bh~al+ah-bl|

27102 by, -y 427192 - ay, - by

INIA

Using theorem 4.4 it is possible to note
tr+ts=ap-by+a;- b+
with
[61] <2717 - Jay, - by + 2719 - fay - by
Let us now consider the following sub-sequence of algorithm 6.1:

(’/’h, tl) «— Mul12 (ah, bh)
tg — a; ® b;
(tg,tl()) — Add12 (tl,tg)

Trivially tg and t19 do not overlap. Additionally, one sees that we have exactly
ry +t =ap - by

and, exactly too,
lg+tio =11+

So using
tG:al®bl:al~bl~(1+5)

where |g] < 273 we get
rh +lo+tio = Th+t1+1s

apn - by +ts
= ap-b,+a; b+

with
|($2| < 27‘)3 . \al . bl|

Let us now bound [tg| with regard to |ay - by:

We have
ltol < o(lta] + [te])
< ofltal +o(lar-bif))
< o(|t1|—|—o(2_106-|ah-bh|))
< o (2_53 . |ah . bh| 4927105, |ah . bh|)
< 27% ay, - by

With inequalities given, we can bound now the absolute and relative error of algorithm Mul23 6.1.
We know already that
tr+ts=ap-by+a;-by + 1

where
|01] < 2102, lap, - by| + 27102, |br, - ail
and
T +to+tio =an by +a;- b+ 6
where

|52| < 2753, \al . bg|

28

One remarks that

lts] < 27|tz
ltio] < 2773 [ty

and easily checks that
273 |ty + tg| < 27100 |tg| + 27100 L |t

and that
27102 |ty 4 tyo 4ty + tg| < 27100 L tg| + 27100 L |t

So by means of the theorem 4.4, we obtain that
Tm + 11 =tg +t10 + 17 + ts + d3

where
|53‘ S 2—101 . |t9| + 2—101 . ‘t7|

So finally we get
ry+rm+r=ap- by +ap-b+a;-by+a;-b+9

where
6] = [01+ d2 + &3

< |01 + |62] + |35]

< 27102 g, p,|
+27192 - by
+2753 . |a; - by
+27152 - by
42101 g

And for [t7| we obtain the following inequalities

o ([tr +ts)

2 |t7 + ts

2- (|CLh . bl| + \al . bh| 427102, |al . bh‘ 4927102, |Cl,h . bl|)
8- |an - by

[t7]

<
<
<
<

In consequence we can check
6] <2719 [ap - byl
Let us give now an upper bound for |ay - b; + a; - by, + a; - b;| as a function of |ay, - by|:

We have

lan - by +a; - by +a; - by lap - bi| + |a; - bp| + |a; - by

<
< 27 ay, - by

from which we deduce that

|ah~bh—|—(ah~bl+al~bh+a1-bl)| > |ah-bh\ . (1—2_51)
1
> §'|Gh'bh|

Thus
|5| < 9149 \ah b +ap - b+ a;- by + ay ~bl|

29

So we can finally give an upper bound for the relative error € of the multiplication procedure
Mul23 defined by algorithm 6.1:

T’h+7"m+’l"l:(athal)'(thrbl)'(lJrE)

with
|€| S 27149

Before concluding, we must still analyse the overlap of the different components of the triple-
double number returned by the algorithm. It is clear that r,, and r; do not overlap because the
Add22 brick ensures this. Let us now consider the magnitude of r,, with regard to the one of
Th-

We give first a lower bound for |ry|:

lrn] = lo(an - bn)l
> o(lan - bpl)

1
> §'|ah'bh|

and then an upper bound for |r,,|:

Irml < o(lrm +7il)
< o(|tr + ts] + |to + tio] + J3)
< of(lap - bl + |ag - bp| + 61 + [to| + [t10] + 03)
< o(lan - ba| - (2753 42798 127155 4 9155 4 95 | 9104 4 9152 4 5-151Y)
< 2749, |ah . bh|

From this we can deduce the final bound
|| <274 - |

6.2 The multiplication procedure Mul233

Let us concentrate now on the multiplication sequence Mul233.

Algorithm 6.3 (Mul233)

In: a double-double number aj, + a; and a triple-double number by, + b, + b;
Out: a triple-double number ry + r, + 1

Preconditions on the arguments:

2—53

lai] < “lan|
bm| < 277 [by
|bl| < 27ﬁu'|bm|
with
Bo = 2
Bu > 1
Algorithm:

30

(Th, tl) «— Mul12 (ah, bh)
(tg, t3) «— Mul12 (a;“)
(t4, t5) «— Mul12 (ah, bl)
(tﬁ, t7) «— Mul12 (al, bh)
(ts,to) (a1, bm)

tio — ar @b

(tu, tlg) — Add22 (tg, t3, t4, t5)
(tlg, t14) — Add22 (tG, t7, tg, tg)
(tis,t16) < Add22 (t11,t12, 13, t14)
(t177 t18) «— Addi2 (tl, th)

(Tm,71) « Add22 (t17,t18, t15,t16)

Theorem 6.4 (Relative error of algorithm 6.3 Mul233)

Let be ap, + a; and by, + by, + by the values in argument of algorithm 6.3 Mul233 such that the
given preconditions hold.

So the following will hold for the values ry,, 1, and r; returned

Th+7rm + 1= ((an +ap) - (b + b + b)) - (1 +¢)

where ¢ is bounded as follows:

2,99,[30 + 2799*ﬁo*ﬁu + 27152 < 2797,ﬁo + 27977,807/8114 + 27150
1— 2733 —2=Fotl — 2=fo—Putl =

le] <

The values r,,, and r; will not overlap at all and the following bound will be verified for the overlap
of T, and ry,:
[rm| <277 - ral

where
~v > min (48,8, — 4,80 + Bu — 4)

Proof
During this proof we will once again proceed by basic bricks that we will assemble in the end.
Let us therefore start by the following one:

(tQ, fi3) — Mu112 (a}“ bm)
(t4, ts) «— Mul12 (a;“ bl)
(t11,t12) — Add22 (ta, 3,14, 15)

Since we have the exact egalities
to+t3 =ap - by

and
ta+ts =ap b

and since we know that t5 and t3 and ¢4 and 5 do not overlap, it suffices to apply the bound proven
at theorem 4.4. So we can check on the one hand

275ty +t5] < 275 [ta] + 2773 [t
S 27106 . |t2| + 27106 . |t4|
< 27105 gy b 42719 fay - by
< 27105 B0 gy by, | 4 271057 Bu g, by
and on the other
27102ty fty Fty+ts] = 27192 jay by +ap - by

27102 ay, by | + 27192 ay, - by
9—102—5, |ah . bh| + 9—102—Bo—fu |ah . bz\

IN A

31

In consequence, using the mentioned theorem, we obtain
ti1 +ti2 = ap by +ap - by + 61
with
|(51| < 2-102=8, |ah . bh| + 2~ 102=B0=fu |ah . bl‘
Let us continue with the following part of the algorithm:

(tg, i7) «— Mul12 (al, bh)
(tg, tg) «— Mul12 (al, bm)
(t13,t14) < Add22 (tg, 17,18, t9)

We have
270tz o] < 277 [tg| + 2777 - [t
< 9—106 | |t6| + 9—106 | |t8|
< 27105, la; - by| + 2105, |a; - by, |
< 27158 . |CLh . bh‘ + 271587’60 . \ahbh|
and
9-102, |t6 +tr + 1+ tg‘ = 9710z, |al by +ap - bm|
< 9102, |al . bh| + 9102, \al . bm|
< 9—155 |ah . bh| + 9—155—0, | |ah . bh|
So we get
tig+tia =a;-by +a;-by + 062
with

|52| < 27155 . |ah . bh| =+ 2715576" . |ah . bh|

Let us now consider the brick that produces t15 and t1¢ out of the values in argument. By the
properties of the Add22 procedure, t1; and t12 and ¢13 and t14 do not overlap at all and verify
thus the preconditions of the next Add22 brick that will compute t15 and t15. So it suffices to
apply once again the absolute error bound of this procedure for obtaining

tis +tig = t11 +ti2 +tig +t1a + 63

with |d3] which remains to be estimated.
So we have on the one hand

275 L |tya] + 2753 - |tyy]
97106 |1 427106 ||

277 Jtyg +ts] <
<

— which is an upper bound that can still be estimated by

[t11] lo (t11 + ti2)]

< |t +ta2) - (1+27%9)]

< 2 |t11 + tig]

< 2-\ah~bm+ah-bl+51\

< 2-(lan - bl + an - bi| +101])

< 2. (2760 Nap - by| + 9= Bo=Pu . lan, - by| + 9—Bo—102 lap - by| + 9—Bo—fu—102 \a, 'bh|)
< Jan bl - (27972 4 2B But2)

32

which means, using also the following inequalities that

[t13] o (tiz +tia)]
< [tig + tid]
~|al~bh+al~bm+5g|

|
2
2
2+ (Jar - by| + lag - b | + [32)
2
2

. (2—53 . |ah . bh| + 2—53—60 . |ah X bhl 4 9—155 |ah . bh| + 2—155—50 . |ah . th

=50 | ‘ah'bh|

VAN VAN VAN VAN VAN

we can finally check that we have on the one side
2773 [t12 + t1a] < |ap - bpl - (27&7104 4+ 27 Fo—fum104 4 27156)
And on the other

27102 |ty i + tis + 27192 ay by 4+ ap by A ap by A ag by + 01+ 0o

<
< 9-102
(27ﬁo
497 Bo—Bu
+27%
492~ Bo=53
49— Bo—102
49— Bo—Bu—102
49155
+27,807155)
< ap - bal- (2—60—101 + 9= Po—fu—101 2—154)

"ah'bh|‘

So we know that
tis +tig =t +tiz +tig +t1a + 63

with
|03 < |ap - by - (27Fe 7101 4 27 Fo=Bum101 4 9=154)

With this result we can note now
tis+tie=an bm+an-by+a-bp+a;-by+ds
with

104 < an - bnl-
(2102
19 Bo—Bu—102

1 9—155
49~ Fo—155

+27ﬁ07101
_;'_2—50—[3“—101)

< lap byl - (2—50—100 4 27 Po=Pu—100 4 2—155)
Let us give now an upper bound for J5; defined by the following expression:

T +11 =11 +a;- by +ti5 +ti6 + 95

33

It is clear that t17 and t1g do not overlap. In contrast the Add12 operation which adds t; to t1o
is necessary because t; and t19 can overlap and even “overtake” each other:

|t1‘ > 2106 |ah ~bh| Vit =0

and
[tio] < 27Fe=Pu=52 qy - by

The same argument tells us that the Add12 must be conditional.

So we have
t17 +t18 = t1 + t1o
and
tio :al~bl+§/
with

|5" < 9—106—Fo—Fu , |ah by
Let us apply once again the bound for the absolute error of the Add22 procedure:
So we have on the one hand
2755 - [t1g] +27°% - [tag]

2758 |t1g + tig] <
< 27100 | 427190 g5

We can estimate this by

tiz| < fo(t1 +tio)]
< 2|ty + to]
< 2-|t] 42 |tol
< 272 rp| 2 Jo(ar - b))
< 272 o (ap - by)| + 2% - |a; - by
< 27 ay byl 4270 ay, - by
and by
ltis| = [o(ti5 +tie)l
< 2|ty + tas]
< 2-|ah-bm—l-ah-bl+al-bh+al-bm+54|
< Jap - bp| - (270 4 2 Be=Butl 4 9752 4 9-00=52 | 9=B.=99 | 9=Po=0u=99 4 9-151)
< |ah . bh| . (27ﬁo+2 + 9= Bo—PBut2 + 2751)

So finally, we have on the one hand

2753 . |t1s + tig]

IN

lap, - by - (2—157 4 9 157—Bo—Bu | 9=104=08, | 9—=104—B,—fu | 2—157)
lan - by - (27&7104 4 27 Bo=Bu—103 2—156)

A

And on the other

271 ftyr +tis+tis+tis] < 2717ty ar b4+ 6 +an by +an bi+ag by
+ay - by, + 64
< 97102, (9753 |y

+2_53_6°_’6“ . |ah . bh‘
+27ﬁ° . |ah . bh|
_~_2_Bo_ﬁu . |Clh . bh‘

34

+27°% - Jay, - by

427530 lan - by

49 106—Bo—Fu la - by

+ap - by - (271007Fe 4 97 100-Ao=Fu 4 9—155))
< |ah . bh‘ . (2—101—50 + 2—101—ﬁ0—ﬁu + 2_153)

which means that we finally obtain the following
Tm + 1 ="114+a by +ap by +ap-b+ap-by+ap- by +de

with
|06] < |04 + J5]

where
165 < |an - by - (2—101—[30 1 9-101-Bo—Bu | 2_153)

Thus we can check that

6] < lan-bul- (2—100—ﬂo 497 100=Bo—Bu 4 9=155 4 9=101-B, | 9—101—-Bo—fu 2_153)
< ap - byl - (2*99%0 4+ 9799 Bo—Pu 27152)

Let us now integrate the different intermediate results:
Since we know that the following egality is exact

ry, +t1 = ap - by

we can check that
rh +rm + 1= (ap + ap) - (by, + by + by) + g

We continue by giving a lower bound for |(ap, + a;) - (by, + by, + b;)| using a term which is a function
of |ap, - bp|. We do so for being able to give a relative error bound. We first bound

|ah~bm+ah~bl+al~bh+al-bm+al~bl|

by such a term.

We have
lan - bm +an - by +a;-bp+ar by +ar-by| < ap - bpm| 4 |an - b + |a; - b+ |ar - b | + |a; - by
< ap - byl - (2*50 + 9 Bo=Bu 4 9—53
+2—50—53 + 2—50—53)
< 9—Botl, |ah . bh| + 9= Bo—PButl |ah . bh|

+2753 ay, - by
and we get
[(an +ar) - (bn + by + by)| > |ag - by| - (1 — 2758 — 27 Pt _ o=fo=Futl)
from which we deduce (since 3, > 2, 8, > 1)

1
— 9253 _92=fo+l _ 9—Bo—Pu+1

lan - bp| < 1 “(an +ar) - (by + by + by

Using this inequality we can finally give a bound for the relative error ¢ as follows:

rh+rm+rl=(ah—l—al)-(bh-l-bm-i-bz)'(l—i—s)

35

with
2—99—50 + 2—99—ﬁ0—ﬁu + 2—152

I s i e
Let us recall that for this inequality, 8, > 2, 8, > 1 must hold which is the case.
It is certainly possible to estimate |e| by a term which is slightly less exact:

|€‘ S 2—97—50 + 2—97—50—[3u _|_ 2—150

because

1—979 _9=0Bot+l _ 9=Bo—Lutl > 1

4
for VB, > 2,8, = 1.

In order to finish this proof, we must still give an upper bound for the maximal overlap gen-
erated by the algorithm 6.3 Mul233. Clearly r,, and r; do not overlap because of the properties
of the basic brick Add22. Let us give an upper bound for the overlap between r, and r,, giving
a term of the following form:

|rm| <277 - [ra]

where we constate a lower bound for v using a term in 3, and f3,.
Let us start by giving a lower bound for rj, as a function of |ay, - by|.

We have
Irnl = o(an - b))
1
> §'|ah'bh|

Then, let us give an upper bound for |r,,| using a function of |ay, - by|:

[rm| < lo(rm + 1)
< 24 rg 1
< 2-|ti4+ar-bi+ap by, +ap b+ ap-by + ap - by, + 06
< 2. |ah . bh‘ .
. (2752 427 Bo=Pu=53 L 9=fo | 9=Fo—fu | 953 | 9=fo=53
92 Po=99 4 9=Bo—fu—99 4 2—152)
< ap by - (2750 4270072 4 27 Fomfut)

This implies that

IN

2 |rp| - (2790 4270072 4 27 FomFut2)
|y - (2740 4 270073 4 9= Fa=Butd)

|7]

IN

From which we can deduce

|rm| <277 - Jra]

with
v > min (48, 8, — 4, 8o — Bu — 4)

This result finishes the proof. ||

36

7 Final rounding procedures

The renormalisation sequence and all computational basic operators on triple-double numbers have
been presented only for one reason: allowing for implementing efficiently elementary functions in
double precision [4, 1, 3|. For obtaining this goal we are still lacking an important basic brick: the
final rounding of a triple-double number into a double precision number. This rounding must be
possible in each of the 4 known rounding modes [2]. In particular, we will distinguish between the
round-to-nearest sequence and the ones for the directed rounding modes.

Let us start this discussion by introducing some notations:

We will notate

e o(z) € F the rounding to the nearest double precision number of a real number x € R,

e A (z) € F the rounding towards 400 of a real € R into double precision,

e V (z) € F the rounding towards —oo of a real x € R into double precision and

e o(z) € F the rounding towards 0 of a real number 2 € R into a double précision number.

Since the directed rounding modes behave all in a similar fashion we will make a slight abuse of
our notations. An unspecified directed rounding mode will be notated also ¢ (z).

Definition 7.1 (Correct rounding procedure)

Let be A a procedure taking a non-overlapping triple-double number xp + ., + x; as argument.
This number be such that &, = o (x,, + ;). Let the procedure A return a double precision number
/

x’.

So we will say that A is a correct rounding procedure for round-to-nearest-ties-to-even mode iff

for all possible entries

¥ =o(xp+ Ty + 1)

The same way A is a correct rounding procedure for a directed rounding mode iff for all possible
entries
¥ =o(xp+Tm+ 1))

In the sequel we will present two algorithms for final rounding — one for round-to-nearest mode,
the other one for the directed modes — and we will prove their correctness with regard to definition
7.1.

7.1 Final rounding to the nearest even

Lemma 7.2 (Generation of half an ulp or a quarter of an ulp)

Let be © a non-subnormal floating point number different from +£0, 00 and NaN and such that
x~ s not a subnormal number.

Given the following instruction sequence:

t1 —x~
to — 6t
t3<*t2®%

we know that

o if it exists a k € Z such that x = 2% exactly so
1
t3] = 3 - lp (2)
e if it does not exist any k € Z such that x = 2% ezactly so

1
ts] = 5 - ulp (2)

37

Proof

Without loss of generality, we can suppose that = is positive because the definition of £~ and all
floating point operations are symmetrical with regard to the sign [2] and because the egalities to
be proven ignore it. Additionally since the floating point multiplication by an integer power of 2
is always exact, it suffices to show that to = % -ulp () if x is exactly an integer power of 2 and
that to = ulp (z) otherwise.

Let us begin by showing that we have the exact equation

to=x—x

which means that the floating point substraction is exact. This is the case by Sterbenz’ lemma
[11] if

1 _

3 r<x <2-x

So let us show this inequality.

Since x # 0 and since it is not subnormal we know already that = # 0. Additionally = > 0
because x > 0 and =~ is its direct predecessor with regard to <. Further by definition 2.1, it is
trivial to see that Vy € F. (y~)" =y = (y*)~

Since z is positive and since x~ is therefore its predecessor with regard to < we have

r<r<2-x

Let us suppose now that

with
2Pl <y < 2P

where p > 2 is the format’s precision; in particular, for double precision, p = 53.
Given that x~ is not subnormal neither and positive, too, it is the predecessor of x and verifies

B 2¢. (m—1) if m—1> 201
r = e—1 i
2¢71.(2P — 1) otherwise

So two cases must be treated separately:
1st case: z~ =2¢-(m—1)

We get here with the hypotheses supposed

- < 1

x —-z
2
1

2°-(m—-1) < 5-2e-m

1 < L

m— —-m
2
m 2

In contrast m > 2P~ and p > 2; so we have contradiction in this case.

2nd case: ¥~ =2°"1. (2P — 1)

38

We can check

x <

207 (27t —1) <

27 (27 —1) < 2hem
2 —-1<m

In contrast m < 2P, thus 2P — 1 < m < 2P. This is a contradiction because the inequalities are
strict and m € N.

So Sterbenz’ lemma [11] can be applied and we get the exact equation

to=x—x
It is now important to see that
N 2. (m+1) if m+1<2°
T = .
2¢tl.2p=1 otherwise

Further, without loss of generality, we can suppose that 2™ # +o0o and that therefore

ulp (2) =27 — o

If ever we could not suppose this, it would suffice to apply definition 2.2 of the ulp function which
would only change the exponent e by 1 in the sequel.

So at this stage of the proof, two different cases are to be treated: z is or is not exactly an integer
power of 2.

1st case: x is not exactly an integer power of 2

So we get x = 2°-m with 2°7! < m < 2P from which we deduce that m — 1 > 2P~! and
that, finally,
x= =2%-(m—1)

So still two sub-cases present themselves:
case a): zT =2¢. (m+1)
We can check that

ulp(z) = =

2°-(m+1)—2°-m

= 2°-(m+1-m)
9e

— T

and

to = x—x
2¢-m—2°(m—1)
= 2°-(m—-m+1)

39

So we know that
to = ulp (z)
case b): zT =2¢- (m+1)

So in order to get xt being equal to 2¢ - (m + 1), we must have m + 1 > 2P.
In contrast we can show that m + 1 < 2P as follows:
Let us suppose that m + 1 > 2P. Since m < 2P because x is not subnormal we get

22— 1<m<?2P

In contrast, the inequalities are strict and m € N, thus contradiction.
We therefore know that

m=2F -1
So we get
ulp(z) = 2t -2
= 2¢Fl.op=l _9e. (9P 1)
= 2°.2P _2°.2P 4 2¢
26
and
to = x—x

= 2¢.(2P—1)—2°. (2" —2)
2¢.9P _ 9 _¢.9P 1 . 9¢
= 26

Thus we have still
to = ulp (z)

2nd case: z is exactly an integer power of 2

So in this case we verify that
z=2°.20"1

and therefore m = 2P~ 1,
In consequence,

gt =2¢ (2071 + 1)

because we got 2P~! + 1 < 2P since p > 2.
The same way

xm =271 (2P — 1)
because, trivially, 2P71 — 1 < 2P—1,

So we get

ulp(z) = 2t -2
= 2¢. (2071 41) —2¢. 207!
— 9¢.9p7 1 9e _9ge ogp—l

= 28

40

and

to = xTz—a
2¢. 9P~ _ge=l . (9P _ 1)
26 . 2p—1 _ 26—1 . 2p T 26—1

— 26—1
1

= —.9¢
2

Thus we can check that)
lg = B ~ulp ()

Lemma 7.3 (Generation of half an ulp)
Let be x a non-subnormal floating point number different from £0, £o0o and NaN.
Let be the following instruction sequence:

t1<—l‘+

to—t16x
t3<*t2®%

So the following holds
1
ta] = 5 - ulp ()
and one knows that
x>0 4fft3 >0

Proof

In the beginning we will show the first equation; the equivalence of the signs will be shown below.
So, without loss of generality, we can suppose that x is positive because the definition of ™ and
all floating point operations are symmetrical with regard to the sign [2] and because the equation
to be shown ignorates it. Further since the floating point multiplication by an integer power of 2
is always exact, it suffices to show that to = § - ulp ().

Let us still start the proof by showing that the substraction

t2<—t1@1}

is exact by Sterbenz’ lemma [11]. We must therefore show that
1 +
3" r<zx"<2-x

Since x is positive and since x™ is its direct successor in the ordered set of the floating point
numbers, we know already that = < 7. So trivially, we get

1
§-x<x<x+

Let us suppose now that
T >2.x

Since x is not subnormal and since it is positive, there exist e € Z and m € N such that
r=2%m
with

2Pl <y < 2P

41

where p > 2 is the precision of the format.
Further we know that

i 2°-(m+1) if m+1<2P
zt =)
2etl.or=1 otherwise

So two different cases show up:

1st case: zt =2°-(m+1)

We have
2t > 2.2
2°-(m+1) > 2-2°m
m+1 > 2-m
1 > m

In contrast, m > 2P~1 and p > 2, thus contradiction.
2nd case: zt = 2¢+1.2r-1

So in this case, we have m + 1 > 2P and therefore m = 2P — 1 because m < 2P — 1 holds
since x is not subnormal.

We get thus
2t > 2.2
2¢tl . op=l 5 9.9¢. (2P 1)
2¢.2P > 2.2¢.2P —2.2°
2 > 2.2 -2
2> 2P

In contrast p > 2 which is contradictory.
So we can apply Sterbenz’ lemma [11] and we get immediately that

+

to =27 —x =ulp(x)

by the definition of the ulp function
Let us show now that
r>0iTt3 >0

Let us suppose that x is positive. In consequence x™ is its successor with regard to < and we get

zt—z>0
which means that
to = zTox
— o(at-a)
> 0

because the rounding function is monotonic for positive numbers.
In contrast, if x is negative =T is its predecessor with regard to < and we get thus 27 — z < 0.
We conclude in this case in the same way. ||

Lemma 7.4 (Signs of the generated values)
Let be x € F a non-subnormal floating point number different from 0.
Given the following instruction sequence

42

t1 — ™
tQertl
t3<—t2®%
t4<—l‘+
ts —t46x
te — 5@ 3

the values t3 and tg have the same sign.

Proof
It is clear that it suffices to show that ¢ and ¢5 have the same sign. Because of definition 2.1 of
zT and 27, we are obliged to treat two different cases which depend on whether z is positive or not.

1st case: >0

So xt is the successor of with regard to the order < on the floating point numbers and z~
is its predecessor. Formally we have
T <z<at

Thus

r—x > 0
2 —z > 0

Due to the monotony of the rounding function, we obtain

o(z—z7) > o(0)
ozt —z) > o(0)

and thus, since 0 is exactly representable,

zoxz- > 0
ztexr > 0

which is the fact to be shown.
2nd case: z <0

We get in this case that 27 < 2 < = and we finish the proof in a complete analogous way
to the 1st case. ||

In the sequel, we will use the sign function sgn () which we define as follows:
-1 ifx<0
Ve e R . sgn(z) = 0 ifxz=0

1 otherwise

Lemma 7.5 (Equivalence between a XOR and a floating point multiplication)
Let be x,y € F two floating point numbers such that x # 0, y # 0.
So,

r®y=>0
implies

z>0XORy>0

43

Proof

Clearly x ® y > 0 implies o (z-y) > 0. By monotony of the rounding function, this yields to
x -y > 0. Trivially one sees that this means that £ > 0 XOR y > 0. Since the equations are not
possible by hypothesis, we can conclude. |}

Lemma 7.6 (Round-to-nearest-ties-to-even of the lower significance parts)
Let be z,,, and x; two non-subnormal floating point numbers such that 3e € Z . 2¢ =t such that
Ty =t~ and that x; = % - ulp (t).
So,
Ty # O (xm + 131)
Similar, let be x,, and x; two non-subnormal floating point numbers such that e € Z . 2° =t
such that xn, =t* and that z; = 3 - ulp (t).
So,

T 7& o (xm - Z‘l)

Proof

In both cases t is representable as a floating point number because x,, is not subnormal. Since
t is an integer power of 2, the significand of ¢ is even. Therefore the significand of z,, is odd in
both cases because x,, is either the direct predecessor or the direct successor of .

Let us show now that |2;| = % - ulp (zy,,). If ,,, = ¢~ then we can deduce

(2 = 2m)

(t=17)

= —f~(t+—t)

1
S b (o) =

N = N =

= —-ulp()

using amongst others lemma 2.9. If z,, = t* then we know that z,, is not an integer power of 2
because t is one and we are supposing that the format’s precision p is greater than 2 bits. So it
exists e € Z and m = 2P such that t =2°-m

1
S ulp (o) =

~ulp (¢)

SN =N =N =N =

So, in both cases, x,, + x; is located exactly at the middle of two floating point numbers that can
be expressed with the exponent of x,, or its successor and its predecessor. Since z,, has an odd
significand the rounding with done away from it. |

Algorithm 7.7 (Final rounding to the nearest (even))
In: a triple-double number xp + x.m + 2}

Out: a double precision number x’ returned by the algorithm
Preconditions on the arguments:

e 1, and x,, as well as x,, and x; do not overlap

44

® Tm :O(xm+$1)
e 2, #0, 2, #0 and z; #0

e o(xp+ay,) ¢ {m;,xh,mt} = |(zp +2m) —o(zh +om)| # % ~ulp (o (z, + z4m))
Algorithm:

ty — x,
to «— xp © 1
t3<—t2®%
t4<*’JJ;~L_
ts «— t4 © xp
te — 5 ® 3

if (z,, # —t3) and (z,, # tg) then
return (z;, ® z,,)

else
if (xy, ® z; > 0.0) then
if (xp, ® ; > 0.0) then

return :C;i_
else
return x,
end if
else
return z,
end if
end if

Theorem 7.8 (Correctness of the final rounding procedure 7.7)
Let be A the algorithm 7.7 said “Final rounding to the nearest (even)”. Let be xp + xp + x
triple-double number for which the preconditions of algorithm A hold. Let us notate x' the double
precision number returned by the procedure.
So

¥ =o(zp+Tm+ 1))
i.e. A is a correct rounding procedure for round-to-nearest-ties-to-even mode.

Proof

During this proof we will proceed as follows: one easily sees that the presented procedure can only
return four different results which are x5, ® x,,, zp, x;{ and z; . The choices made by the branches
of the algorithm imply for each of this results additional hypotheses on the arguments’ values.
It will therefore suffice to show for each of this four choices that the rounding of the arguments
is equal to the result returned under this hypotheses. In contrast, the one that can be easily
deduced from the tests on the branches, which use a floating point multiplication in fact, are not
particularly adapted to what is needed in the proof. Using amongst others lemma 7.5, one sees
that 9 different simply analysable cases are possible out of which one is a special one and 8 have
a very regular form:

1. If the first branch is taken, we know that

-ulp (z,)

N |

LTm 7é sgn (l'h) :

and that
culp(zy,) ifJe€Z. 2¢=uxy
-ulp (z,) otherwise

o # s (o) {

as per lemmas 7.2, 7.3 and 7.4. In this case z;, ® x,, will be returned.

D[| =

45

2. If the first branch is not taken, we know already very well the absolute value of x,,: we can

therefore suppose that

onl = {

DO [[

culp(xp) if3e€Z.2°=uxy
-ulp (z,) otherwise

It is thus natural that x,, does not play any role in the following computations of the value to
be returned but by its sign. Using 7.5 we know that the two tests that follow are equivalent
to if z,,, > 0 XOR x; > 0 and to if z;, > 0 XOR x; > 0. It is easy to check that the values

returned depending on the signs of x, z,, and x; obey to this scheme:

Case | z1, xwm 1 | Twm XOR z; x5, XOR z; | Return val. 2’ | Interpreted val. =’
a.) S S + + z succ (xp,)

b.) + + - - - Th Th

c.) + - + - + T T

d.) + - - + - T, pred (zp,)

e.) - + + + - x, succ (xp,)

f.) - + - - + Th Th

g.) - - + - Tp T

h.) - - - + + x pred (zp,)

We see now that the returned value =’ expressed as xp, succ (x) or pred (zp) in cases a.)
through d.) are equivalent to cases h.) through e.). We will consider them thus equivalently;
of course, doing so, we will not any longer be able to suppose anything concerning the
magnitude and the sign of xj,.

Let us start the proof by showing the correctness of the first case. Since x;, and x,, do not overlap
by hypothesis, we know by definition 2.3 that

So we can notate the following

with

where

\]

Il
—N
D[=

This is equivalent to claiming

|| < ulp (z3)

T € UILUIL ULy UILU I

ulp (1)
~ulp (z,)

—7;0]

1
0; B -ulp (xh)[

1
L ip (@) —T[

—ulp (z1,) ; —Z -ulp (xh)}

3 1
1 -ulp (xh) ;) -ulp (mh) {

% -ulp (zp) ;ulp (x3) [

ifdecZ.2°=uxy
otherwise

Ty €ELHUILL,UI3UILUI5U Ig

46

where

I = |(—ulp(zn)) ; <3 -ulp (xh)) +]

4
L = _(j-Mpqu_;<—;-mpum0+]
1

Iy, = {(—7’)7;0}

I, = |0 (;'Ulp(mh)>]

Iy = (; -ulp (l’h)) ' ; (ulp (ﬂfh))]

because z,, is a floating point number and because all bounds of the intervals are floating point

numbers, too. So we can express their predecessors and successors by 2z and z~. Thus Vi =
1,...,6 . I/ =I,. It is clear that the set of floating point numbers I3 is empty if 7 = 1 - ulp (z3).
Further we know that x,, and z; do not overlap and that z,, = o (x,, + ;) by hypothesis. This

means that 1 1
21| < 5 - ulp (2m) < 5 - ulp (ulp (1))

[\

and we can write

xm+$lG(J1UJ2UJ3UJ4UJ5UJ6)\U

with
- +
J = (—ulp (z3))” — % -ulp (ulp (x3)) ; (_2 -ulp <$h)> + % - ulp (ulp (xh))]
- _ +
Jy = <_Z -ulp (xh)) - % -ulp (ulp (z4)) ; <_; +ulp (xh)> + % -ulp (ulp (xh))]
no= [0 -5) o]
Js = |0; (; ~ulp (%)) + % ~ulp (53)1
- +
Js = (; -ulp (:ch)> - % ~ulp (ulp (z5)); (ulp (z1))~ + % - ulp (ulp (mh))]
where
& = %qﬂp(xh) €l
& = 1€y
& = % -ulp (z3) € I

and where U is the set of the impossible cases for x,, + z;. The word “impossible” refers here to
the facts caused by the property that x,, = o (., + x;).

47

Let us still remark that the intervals .J3, J4 and J5 are well defined as per lemma 2.13 and that it
is important to see that it does not suffice to estimate their bounds by the less exact inequality
that follows:

ulp () < ulp (ulp (z))
which would mean that

& = ulp (zp)

Since the images of the ulp function are always integer powers of 2, the difference of their prede-
cessors and themselves can be as small as half an ulp of an ulp of x;, which would be a too inexact
estimate.
Let us continue now with the simplification of the bounds of the intervals J;. The purpose of
this will be showing that z,, + x; are always intervals such that one can decide the rounding
o(xp + (zm + ;1)) without using the rule of even rounding. Let us remark already that we know
Since ulp (z5,) is a non-subnormal floating point number that is positive and equal to an integer
power of 2, we get using lemmas 2.8 and 2.9 that

(—ulp (e4))” = 5 -ulp (ulp (o)) = —ulp ()™ — 5 - (ulp (ea)" —lp (1))

= —ulp(zp) + (11113 (75,) — ulp (xh)i)

—% . (ulp (zp)" —ulp (xh))
— (o)
and similarly
lp (@) + 3 ulp (ulp () = ulp (4)” 5 - (ulp ()~ lp ()

ulp () + (ulp (wa) — lp (w4) ")
= ulp(a)

Further, still analogously to the previous cases and using lemma 2.11,

(; -ulp (xh)>) + % -ulp <; -ulp (a:h)) = % ~ulp (zp) + iulp (ulp ()
= % . (ulp (xn)” + % . (ulp (zn)" — ulp (xh))>
— % . (ulp(a?h)_ + ulp (zp) —ulp(l‘h)_)
= % -ulp ()
and
1 o 1 1
(2 ulp (xh)) - ulp (ulp (z3)) = 3 ~ulp (zp) " — 3 (ulp (z)" — ulp (l’h))
_ 1 ~ulp (zp)
2
Then
<_; -ulp (:Ch)) B % -ulp (i -ulp (xh)> - _% -ulp (77,) " — i ' (ulp (xh)Jr —ulp (xh))
© 1 (e~ (o) sip (o)

1
= 5 ()

48

further, using also lemma 2.12,

+
(_i ~ulp (xh)> + % “ulp (ulp (z4)) = —7-(3-ulp(z) " + % ulp (ulp (z4))

- (3 ulp (@) — ulp (ulp (1)))

+
N CON — i = |

~ulp (ulp (x4))
= =3l (@)’] b (ulp (1))

- (ulp (24)* — ulp () — ulp (22)*)

o

— —% -ulp (zp,)

and, still with the same lemmas,

I

(-3 up(en) - @) = §3up(n)” - Jub ()
= 1 (3w () ~ (3 uip ()™~ 3-ulp (1))
~ -l (ulp (1))
(3 Gea))* — 6-ulp (1)) — 5 o (ulp (1))

S(3-ulp (zp))" — g ~ulp (zp,) — % ~ulp (ulp (z1))

(3 ulp (@)™ = ulp (ulp (1))

1N [N RO N Sy

— 3 ulp (a1) — 5 - ulp (ulp (1))

- 2 : (u1p (@r)" =2 ulp (4) — ulp (ulp (xh»)
= 2 (ulp () 2 ulp () —ulp (2a)” + ulp ()
= —g . ulp (l'h)
and finally
+
(4 sptan) " enlan) = (o) s - o)
= —% . ulp (Ih)

For each bound that depends on 7 we are obliged to treat two different cases.
Let us suppose first that

1
=13 ~ulp (zp)

So we get

(-i ~ulp (xh)> - % ~ulp (i ~ulp (xh)) =

(utp (o) = 5 (up o) —ip (a))
(cutptan)” - (s (o) = aip o))

g R g

49

) (—ulp (x)” —ulp(x3)” +ulp (xh))

-ulp (z)

e R S

/I\
|
=3
kel
—
8
>
~~_
+
+
N =
=3
kel
7N
o |
=3
kel
—
8
>
~~_
Il
N

. (—ulp (z1)" +ulp (z)" — ulp (xh)>

1
1 ulp (z5)
Let us suppose now
1
T = 3" ulp (zn)

We get thus

(s b on(l) = b (s ot o)
— % . (—ulp (zp)” — (ulp (zn)” —ulp (xh)))
_ % : (_ulp (z4)” —ulp (z)” +ulp (xh)>
_ %-u]p (2n)
and
(_; . (xh)>* e (; ulp (xh)> _ <_; ulp <xh))+ + 7 ulp (ulp (1)

.
< (=3 u(n) -+ g up p)

1
— L oup()
Finally, for all cases, we observe the following intervals:

.%'m—‘r.’lﬁlE(JlUJQUJ3UJ4UJ5UJ6)\U

with

I 3

Ji = |—ulp(zp); ~1 ulp (xh)}
- 3 1

s = [(o) o)
[1

gio= 3]

Jy = [__7'30]
[1

Js = |05 5 ulp (mh)}
:1

Jg = 5 ~UIp(CL‘h);UIP(CEh)]

Let us now consider more precisely the set U if impossible cases due to the property that z,, =
o (&, + x;) and due to the fact that x; # 0:
Let us show that 1 - ulp (z),) € U, i.e.

1
T+ ~ulp (zn)

a0

Let us suppose that this would not be the case. We would get
1
T+ x = 5 - ulp (2p)

As x,, # % -ulp (z5,) as per hypothesis in this branch of the algorithm and because z; # 0, there
must exist a number 1 € R\ {0} such that x,,, = % - ulp (z),) + p and that z; = —p.
Since x; = p must hold, p must be a floating point number. Further

1
6l =] < 5 - ulp (20)

must be justified. So there exist two floating point numbers % -ulp (z1,) and x,, such that their
difference verifies

1
~ulp (wn) +p = 5 -ulp (1)

T — 3 -ulp (zp,)

T N~

< —-ulp(xm)

N =

which is possible only if x,, is exactly an integer power of 2. In contrast, as % -ulp (xy) is the only
one in the interval that is possible for x,,, which is by the way]% -ulp (zp,) ;ulp (xp) [, we obtain
a contradiction.

Using a completely analogous argument, one sees further that

—TeU

Clearly 0 € U because z; # 0 and it is less in magnitude than x,,.
Let us show finally that —ulp (x;) € U and that ulp (z5,) € U.
Let us suppose that we would have

|Zm + 2] = ulp (zp)
In contrast we know that |x,,| < ulp (x). Since x,, is a floating point number, this means that
[Zm| < ulp (27,)
which yields to
|z;| > ulp(xp) —ulp(z)”
= 5 (alp (@) — lp (1))

N~ N~

~ulp (ulp (1))

Further we know that |z,,| < ulp (z;)” and that |2;| < 3 - ulp (z,,). So we can check that

|z < ~ulp ()

-
1
2

= 5 () —up o)
% . (ulp (xp,) — ulp (xh)_)
1

= -ulp (ulp (x3))

W

We have thus obtained a contradiction to the hypothesis that says that —ulp (z,) ¢ U and that
ulp (z5,) ¢ U.

ol

Let us still show that in the case where xj; is an integer power of 2, i.e. de € Z . x, = 2€,
f% -ulp (zp,) € U. Since x; # 0, using a similar argument as the one given above, the problem can
be reduced to showing that z,, = —% -ulp (z,) is impossible if xj, is an integer power of 2. Let
us suppose the contrary. Since x; is an integer power of 2, its significand is even. In consequence
the significand of z, is odd and the one of z, ~ is again even. So o(zj + x,) = z, because
Th + T4y is at the exact middle between z;, ~ and z, and the significand of z; ~ is even. It follows
that (z, + 2m) — o (¥ 4+ @) = 3 - ulp (o (x4 + z,,)) which is impossible as per hypothesis.
Having shown which numbers are in U, we can rewrite our intervals as follows

T +x € JUJZU TS U T UJL U JG

with

,] 3

Ji = |—ulp(zp); 1 ulp (x5)

1 3 1

Jy = _4'u1p(ffh);2'u1p(ffh){
, T 1

Jy = -3 ~ulp (zp); —7

Ji o= 1-7:0]
, 1

Jy = 035 'UIP(iEh)
, -_l

Jg = 3 -ulp (zp,) ;ulp (zp)

One can trivially check that the rounding o (zj, + (2, + x;)) can be decided without using the
rule for even rounding. In particular the cases present themselves as follows [2]:

x, fept+aeJiANITecZ. 2°=uy,
x, ifx, +x € JJA-Te€Z . 2°=uxy,
x, if v+, € Jb

o(xp + (xm +x1)) =4 if Ty, + 2 € J4
Th if & + 1, € J)
T if xp +) € JE
z) if &, + 21 € J§

which can be compared to

xz, fxp,eliAIecZ.2°=ux,
x, ifep, e[[A-Fe€Z.2¢=zx,
x, if x,,, € I}

o(xp+am)=19 z, if x,, € I
T, if x,, €I
T if xy, € I
x; if x,,, € I

Additionally we check that
Vi=1,...,6. J CI]

We would therefore get an immediate contradiction if we supposed that

o (Ih + (xm + xl)) #o (Cch + zm)

This finishes the proof for the first case.

92

Let us consider now subcases a.) through d.) of the second main case of the proof. We have
already shown that the subcases h.) through e.) are equal to the first ones. Without loss of
generality we will only analyse the case where xj, > 0. The set of the floating point numbers as
well as the rounding function o (Z) are symmetrical around 0. We can therefore suppose that
~ulp (z,) ifJde€Z . 2¢=uy
T = — .
-ulp (z,) otherwise

DO [=

or that

1
T = 5 -ulp (zp,)

depending on whether x,, is negative or positive.
It is clear that one can suppose that

|2 + 21| < ulp ()

2—53

because otherwise we would have |z;| > £ - ulp (z),) whilst |z < -ulp (zp,).

Let us treat now the four cases one after another:

a.) We can suppose in this case that z,, > 0 and that z; > 0:
So

ulp (zp) > @m + 21 > % -ulp (zp,)
Thus since the inequalities are strict
o(xp + (xm + 1)) =z = succ (x,)
which is the number returned by the algorithm.

b.) We have here z,, > 0 and z; < 0:
So the same way, we know that

1
T+ < 3 -ulp (xy,)

Additionally, we know that z; > —2753 - ulp (;) > —1 - ulp (z;,). This yields thus to

o(xn + (Tm +21)) = 21
The correctness of the algorithm is therefore verified also in this case.

c.) In this case one knows that z,, < 0 and z; > 0. In consequence

Ty = —T
with
Loulp(z) if3ecZ.2¢=um,
T=4 1 .
5 -ulp (zy) otherwise
Thus we get

1
1 culp (x7) > 2793 culp (zp) > o + 27 > —7
mentioning analogous arguments as the ones given above. This yields to

o(zh + (Tm +31) = T4

which is the number returned by the algorithm.

33

d.) Finally if z,, < 0 and x; < 0 one checks that
2. 7<xy+x < —T

The lower bound given for x,, +x; can be explained as follows. If 7 = % -ulp (zp,), it trivially
holds due to the bound:
|xm + 2] < ulp (zp)

We have already indicated this bound. Otherwise we know that 7 = 1 . ulp (2;) and that
T, = —7. Since |z;| < 27%% - |z,,], one gets

1
Tm + 2> — (4—1—2_55) -ulp (zp) > =27

Thus the bounds obtained for x,, + x; imply always that
o(xp + (xm + 1)) = 2, = pred(xp)

Thus in this subcase, too, and therefore in all cases, the algorithm returns a floating point
number 2’ which is equal to o (z, + x, + ;).

By this final statement we have finished the proof. |

7.2 Final rounding for the directed modes

As we have already mentioned, the three directed rounding modes behave all in a similar fashion.
On the one hand we have
vz ifz<o0

VieR. o(2)= { A (Z) otherwise

On the other hand, one can check that
VieR. A(Z)=-V(-2)

The given equations are also verified on the set of the floating point numbers F [4, 2]. We will
therefore refrain from treating each directed rounding mode separately but we will consider them
all in common. So slightly deriving from our notations, we will notate ¢ the rounding function of
all possible three directed rounding modes.

Further we suppose that we dispose of a correct rounding procedure for each directed rounding
mode capable of rounding a double number zj, + 2;. This procedure will return in fact ¢ (x5 + ;)
[1, 4]. For constructing a correct rounding procedure for triple-double precision, we will try to
give a reduction procedure for reducing a triple-double number into a double-double number such
that the directed rounding of both triple-double and double-double numbers be equal.

Lemma 7.9 (Directed rounding decision)
Let be x € F a floating point number.
Let be p,v € R two real numbers such that |p| < ulp (x) and |v| < ulp (z) and that
sgn (1) = sgn (v)

So the following equation holds

o@+p)=o(@+v)
Proof
We know by definition of the rounding mode, e.g. by the one of rounding A towards +oo that

succ (y) ifp>0

VyeF, neR,|pl <ulp(y) . A(y+p)= { y otherwise

o4

In fact, the rounding result A (y + p) is the smallest floating point number greater or equal to
Y+ p.

Since z is a floating point number and as pred (z) < z+p < succ (z) and pred (z) < z+p < succ (x)
because || < ulp (x) and |u] < ulp (x), supposing that ¢ (z 4+) # o (2 + v) would yield to an
immediate contradiction. JJ

Lemma 7.10 (Disturbed directed rounding)
Let be & € R a real number and x = o (&) € F the (even) floating point number nearest to &. Let
be () =12 —x.
Let be § € R such that
0] < [€(2)]
So the following equation holds
o(z) =0(T+90)

Let us remark still that the inequality in hypothesis — |§] < |€ (£)| — must be assured to be strict.

Proof
We know already that
o (i +06) = o (v +£(2) +9)
Let us show now that & (#) and & (&) + § have the same sign. Let us therefore suppose that this

would not be the case. Without loss of generality, it suffices to consider the case where £ (&) is
positive; the inverse case can be treated completely analogously.

Thus
§(2) =0
and
E(@)+6<0
In consequence
§(2) <=6
On the other hand
0] <€ (2)]

Thus
which yields to

In this case we know that
6=0

as per the hypotheses of the theorem. Thus contradiction and we know that & (&) and & (2) 4+ ¢
have really the same sign.
It is clear that £(2) < 3 - ulp(z) because the rounding of & towards x is done to the nearest

floating point number. In consequence, since ¢ < & (&) we obtain
() + 6 <ulp(x)

As z is a floating point number it suffices thus to conclude using lemma 7.9 by putting u = £ ()
andv=¢(2)+4. |

Lemma 7.11 (Reduction of a triple-double into a double-double — simple case)
Let be xp, + xpy +x; € F 4+ F + F a non-overlapping triple-double number such that x; is not
subnormal, such that T, = o (X, + x;) and such that |x,| < T where

|

Given the instruction sequence below:

culp (xp) if Je€Z . 2° =|zp| Asgn (zy,) = —sgn (zp,)
-ulp (z,) otherwise

[N

%)

(tl,tg) — Add12 (CEh,ZL'm)
t3 «—ta ®ay

the following equation holds after the execution of the sequence
oty +t3) =0 (xp + xm + 1)

Proof
Due to the hypothesis that |z,,| < 7 we can suppose that x; = o(zp + x,,). In consequence,
using the properties of the Add12 procedure, we know that we have exactly

t1 =o(zp +xm) =z

and
to =xp + Tm — 1 = Ty

So since as per hypothesis we have x,, = o (z,, + 2;), we know also that ¢35 verifies exactly
t3 =Tm D :O(zm“i’xl) =Tm

Let us put now

0= X
and
T=1t +13
Clearly we get
§(2) = 2—o(2)

t1—|—t3—o(t1+t3)
Tp+Tm — o (h + Tm)

Th+ Ty — X

= :Cm
Let us show now that
0] <[(2)]
Amongst other by the lemma’s hypotheses and due to the fact that x,, # 0, we can check that
@) = |zml
> 2772y,
> |z

The inequality the lemma 7.10 asks for in hypothesis is well verified.
So as per the same lemma 7.10 we know that

o(Z+0) =0(2)
This means that
o (T + T +x1) =0 (81 +t3)
which is the equation that was to be shown. |
Lemma 7.12 (Reduction of a triple-double into a double-double — difficult case)

Let be xp, + 4y + 21 € F+F + F a non-overlapping triple-double number such that x; s not
subnormal, such that T, = o (X + x;) and that |x,,| > 7 where

|

Given the instruction sequence below

~ulp (zp) if Je€Z . 2° =|zp| Asgn (vn) = —sgn (zp)
~ulp (z,) otherwise

[N

96

(tl,tg) — Add12 (CEh,ZL'm)
t3 «—ta ®ay

the following equation holds after the execution of the sequence
oty +t3) =0 (xp + xm + 1)

Proof
Without loss of generality, let us suppose in the sequel that z; > 0. This is legitime because the
set of the floating point numbers is symmetrical around 0. In fact it suffices to apply lemma 2.8
and definition 2.2 in order to obtain a proof for each case.
In what follows we will proceed as that: we will decompose the problem in several cases and
subcases that we will treat one after another. For each of this subcases we will show either
directly the desired result or the fact that |to| > |z;|. In the end we will prove that this fact yields
to the correctness of the lemma in each case.
Let us start by considering the case where 7 = % -ulp (z5,). Thus z, is not an exact integer power
of 2.
We therefore get
1
5 < len] < ulp (22)
which is equivalent to

<lom| <ulp(zn)”

N |

because z,, is a floating point number.
We can check now that
x;f if z,,, >0
t1=o(xp+am) =< xp ifz,= % -ulp (zp,) and the significand of z, is even
xz, ifx, <0
This implies the handling of three different subcases.

Let as treat first the case where t; = x,:
We get here

to = xpt+ T, —1

Th+ Tm — Th

and further
t3 = tada
Tm D X

o (zm + 1)

as per the hypothesis on the arguments.
So let us put

t1 +t3

2>

Thus

A
—
>
~
1
o o
= o
FE
l
~+
no
~

=t

and
6] < [& (2)]
because
] <27 |2y

et
T # 0

Applying lemma 7.10 we thus obtain

oty +t3) =0 (zh + Tm +)

Let us continue with the case where t; = x;f:

We get here

to = xp+xT,+1
Ty + Ty — a:;t

~ (a} - 24) + 2

—ulp (1) + T,

—ulp (x3) + ulp (zp)~

— ((tp () — ulp () ")

5+ (up ()" —ip ()

IN

_ _% ~ulp (ulp (1))

Thus 1
[t2 2 5 - ulp (ulp (1))
In contrast |z;| < - ulp (ulp (z5)) as per hypothesis which implies
[t2] = |z
Let us finally check the properties to be show for the third and last subcase, supposing now that
tl = CC;
Since zy, is not exactly an integer power of 2, we can check the following applying amongst other

lemma 2.10:

to = xpta,m—1

Th+ Ty — Ty,
x;f —Th + Ty
ulp (z1) + 2m

ulp () — ulp (zn)

Y

b ulp (1)

We therefore still get
2] = 24

using the same argument as the one given above.

Let us handle now the case where 7 = 1 - ulp (z3,):

We can suppose in this case that xj is an exact integer power of 2 and that z,, is negative because

a8

we had already supposed that xj, is positive and because we know that sgn (z,) = —sgn (z,,). We
get further the following bounds for x,,:

1 _
Z . ulp (l’h) S |xm| S U»lp (-rh)

which means that

_ 1
—ulp (zp)” <ap < 1 ulp (x3)

still because z,, is a floating point number.
Since xp, is an integer power of 2 and as for this reason, its significand is even, one can check that

Ty if z,, = f% ulp (z,)
x), if —% ulp(zp) <y < —1-ulp(z)
t1 =o (mh + xm) = x; if ., = —% -ulp (Jth)

xy, if —3 . ulp(zp) <z < —3 - ulp(z5)
x, if —ulp(zp)” <@ < —2-ulp(zp)

The assertion that ¢ =z, if ,, = —% -ulp (zp,) can be explained as follows:
We have
1
ThtTm = Th— g ~ulp (zn)
1 +
= ThT g (zy — zn)
= Th— (xh - xh)
= Jj;
Thus

o (wh +am) = o (2,) =)

because x; is clearly a floating point number. Let us consider now first the cases where we have

equations, i.e. the cases where x,, = —i -ulp (z,) and z,, = —% ulp (z,):
Let us commence by the case where z,,, = —% - ulp (z,):
We get here

to = xp+xHy; —11

= Tpt+Tm —Th

= [Ijm

and we can check that the following holds by the hypotheses on the arguments

ts = Ty DTy
= o(zm +x1)
= Iy
Let us put now
Fo= 4ty
6 = €T

So by applying lemma 7.10, we get

o(ty +t3) = o (xp + T + 1)

99

because
2] <273 |2y

and x,, # 0 which is a hypothesis of the lemma to prove.
Let us now handle the second of these particular cases, i.e. the cases where x,, = —% -ulp (zp):
We get

to = xp+xTym —11

= Tp+Tym— Ty

1
= @)+
1 1
= 5-ulp (zn) — 5 ulp (zh)
=0
So in consequence we have
a3 = ta@ay
= 06a
And we thus obtain finally
o(xp +Tm +x)) = oty +ta+)
= o(t1+0+a)
o (tl + t3)

Let us now analyse the other principal cases, starting with the case where

1 1
~5 culp (zp,) < @y < 1 -ulp (zp)

This inequality bounding x,, is in fact equivalent to the following one because x., is a floating

point number:

1 _ 1
—=-ulp(ap)” <apy < ~7 -ulp (zp,

2)+

So we can check

to = xp+T,m—1

Th+ Tm — Xy,
= -ulp (xh) + T,
1 _
-ulp (zp,) — 3 ~ulp ()

. (ulp (zp,) —ulp (xh)_>

B R NN

ulp (ulp (1))

In contrast we know that

1
7] < 5 - ulp (@)

Since in the currently treated case the following holds

1
|Zm| < 5 ~ulp (x,)

60

we get as per lemma 2.11

2] < = - ulp (ulp (z1))

vlk\P—‘

which yields to
[ta| > |z

Let us now consider the second and one but not least case. We suppose here that
3 1
~1 ~ulp (zp,) < @y < —5 -ulp (zp,)

which is equivalent to

B 1
(3 culp (z7)) <@ < —= -ulp (zp)™
4 2
We therefore get
to = xp+xT,—1
= Tht+Tm—x,
1
= ()
1 1
< 3 -ulp (zp) — 5 ~ulp (z,) "
1
= —3 (ulp (z)" — ulp (mh)>

= 5 b (ulp (22)
which gives us
t2] > 5 -ulp (ulp (1))
We can deduce from that, still using the argument that |z;| < % - ulp (ulp (z)), that
[t2] > |21

Let us finally handle the last case where —ulp (x)” < x,, < —% -ulp (xp):

Using the property that x, is an exact integer power of 2 and using further lemma 2.10, we can
check now that

to = xptrm—1

= Tp+Tm—T,

Tht+Tm —x, +x, —x,

= Tp—Ty +Tm +x, —T,

1
= 3 ulp (zp) + zm + (m;)+ -,
1
= 5 ulp (z1) + &m + 5 — 2,
1 1
= 5 ulp (zp) + zm + 2-u1p(33h)
= ulp(zp) +
> ulp(zp) +ulp (zp)”
= ulp (ulp (z1))

In consequence we still get the same upper bound for |z, i.e.

[ta| > |z

61

Since we have now treated all the cases that have been showing up, it suffices now to show that the
upper bound already mentioned yields to the property to be proven. Once again, we decompose
the problem in cases and subcases.

Let us start by showing the property for the equation |ts| = |2|:

If sgn (t2) = sgn (z;) we get

t3 = taDa
;D
o(2-xy)
2-x

So we have exactly
th +ts=xp + 2 + 3

and thus
oty +t3) = (zh + x4 +)

Otherwise, we have sgn (t2) = —sgn (z;) and get

3 = la®dm
= —rdx:
=0

exactly. This means finally that
O(fl +t3) = O(tl)

= <>(t1+t2—t2)
= o(zp+am+x)

In the end let us consider the case where one can suppose that [ta| > |z;]:
We can suppose here

t3 = tada
= tytax;+6
with
‘§| < 2753, |t2 +Il|

Let us show now that t5 and t3 have the same sign. For doing so let us suppose that this would
not be true.

Clearly, t2 and ¢3 + z; have the same sign because we know that |ta| > |z;].

So in order to have sgn (t2) = —1 - sgn (t3) to hold, we must have

6] > [ta + 2]

Thus we would obtain
2_53 . |t2 + {El| > |t2 + l’l|

which is not true because
to+x;=0

This would yield to [to| = |2;| which is excluded by hypotheses. Thus, contradiction.
The values t; and t3 have therefore the same sign. By applying lemma 7.9, we get:

<>(t1 + tz) =9 (tl + tg)
Let us show now that

oty +t2) = o (xp + T + 1)

62

in order to be able to conclude.
For doing so, let us put

T = 1+t
5/ = X
(@) = to
and let us check that
0" = |zl
< |t2|
= [£(2)]

We can now apply lemma 7.10 and obtain:

oty +t3) =0 (zh + T + x4)

This is the equation to be shown. |

Theorem 7.13 (Directed final rounding of a triple-double number)
Let be xp, + xp +x; € F +F + F a non-overlapping triple-double number.
Let be o a directed rounding mode.

Let be A the following instruction sequence:

(tl,tg) «— Add12 (lE}“I’m)
t3 < ta Dy
return o (t; + t3)

So A is a correct rounding procedure for the rounding mode ©.

Proof
Trivial as per lemmas 7.11 and 7.12. |}

References

[1] CR-Libm, a library of correctly rounded elementary functions in double-precision. http:
//lipforge.ens-1lyon.fr/www/crlibm/.

[2] ANSI/IEEE. Standard 754-1985 for binary floating-point arithmetic, 1985.

[3] F. de Dinechin, D. Defour, and C. Lauter. Fast correct rounding of elementary func-
tions in double precision using double-extended arithmetic. Technical Report 2004-10,
LIP, Ecole Normale Supérieure de Lyon, March 2004. Available at http://www.ens-
lyon.fr/LIP /Pub/Rapports/RR/RR2004/RR2004-10.pdf.

[4] David Defour. Fonctions élémentaires: algorithmes et implémentations efficaces pour l'arrondi
correct en double précision. PhD thesis, Ecole Normale Supérieure de Lyon, Lyon, France,
September 2003.

[5] Theodorus J. Dekker. A floating point technique for extending the available precision. Nu-
merische Mathematik, 18(3):224-242, 1971.

[6] Claire Finot-Moreau. Preuves et algorithmes utilisant Uarithmétique flottante normalisée
IEEE. PhD thesis, Ecole Normale Supérieure de Lyon, Lyon, France, July 2001.

[7] J-M. Muller. Elementary Functions, Algorithms and Implementation. Birkhauser, Boston,

1997.

63

[8] Jean-Michel Muller. On the definition of ulp(z). Technical Report RR 5504, INRIA, February
2005. Available at ftp://ftp.inria.fr/INRIA /publication/publi-pdf/RR /RR-5504.pdf.

[9] D. M. Priest. Algorithms for arbitrary precision floating point arithmetic. In P. Kornerup and
D. W. Matula, editors, Proceedings of the 10th IEEE Symposium on Computer Arithmetic
(Arith-10), pages 132—144, Grenoble, France, June 1991. IEEE Computer Society Press, Los
Alamitos, CA.

[10] Jonathan R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric
predicates. In Discrete and Computational Geometry, volume 18, pages 305-363, 1997.

[11] P. H. Sterbenz. Floating point computation. Prentice-Hall, Englewood Cliffs, N.J, 1974.

64

